8000 GitHub - MadryLab/missingness: Code for our ICLR 2022 paper "Missingness Bias in Model Debugging"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

MadryLab/missingness

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Missingness Bias in Model Debugging.

This repository contains the code of our ICLR 2022 paper.

Missingness Bias in Model Debugging
Saachi Jain*, Hadi Salman*, Eric Wong, Pengchuan Zhang, Vibhab Vineet, Sai Vemprala, Aleksander Madry

  @inproceedings{jain2022missingness,
      title={Missingness Bias in Model Debugging},
      author={Saachi Jain and Hadi Salman and Eric Wong and Pengchuan Zhang and Vibhav Vineet and Sai Vemprala and Aleksander Madry},
      booktitle={International Conference on Learning Representations},
      year={2022},
      url={https://openreview.net/forum?id=Te5ytkqsnl}
    } 

All scripts to run the experiments in the paper are in patch_ablation/.

Patch Ablation Experiments (Section 3)

To generate the patch ablation experiments, run the script run_patch_ablation.py. For example, to run the basic patch ablation experiments for a ResNet50:

python run_patch_ablation.py --arch resnet50 --out-dir OUT_DIR --methods Saliency_reverse --methods Saliency --ablation-patch-size 16 --saliency-map-pkl model_checkpoints/resnet_50_sal_map.pkl --filler-values 0 0 0 --skip-factor 2

and for a ViT-S:

python run_patch_ablation.py --arch deit_small_resnet_aug --out-dir OUT_DIR --methods Saliency_reverse --methods Saliency --ablation-patch-size 16 --saliency-map-pkl  model_checkpoints/resnet_50_sal_map.pkl --filler-values 0 0 0 --skip-factor 2 --use-missingness

Generate LIME for a given image (Section 4)

Run run_lime.py to generate LIME explanations for a given image (using either blacking out or dropping tokens for ViTs). Example:

python run_lime.py --out-dir  OUTDIR --ablation-patch-size 16 --filler-values 0 0 0 --superpixel-type patches --arch resnet50 --num-perturbations 1000 --batch-size 64 

python run_lime.py --out-dir  OUTDIR --ablation-patch-size 16 --filler-values 0 0 0 --superpixel-type patches --arch deit_small_resnet_aug --num-perturbations 1000 --batch-size 64 --use-missingness

Perform top-K ablation test (Section 4)

Run run_lime_ablation.py to perform the top K ablation test on LIME explanations. Example:

python run_lime_ablation.py --model-name resnet50 --out-pkl OUT_PKL.pkl --lime-pkl LIME_PKL --ablation-patch-size 16 --num-features 50 --feature-skip 2 --superpixel-type patches

python run_lime_ablation.py --model-name deit_small_resnet_aug_missingness --out-pkl OUT_PKL.pkl --lime-pkl LIME_PKL --ablation-patch-size 16 --num-features 50 --feature-skip 2 --superpixel-type patches

Download our Models and Data

We further have the following files on dropbox since they were too large:

Have further questions?

Feel free to raise issues or contact us!

About

Code for our ICLR 2022 paper "Missingness Bias in Model Debugging"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

0