[go: up one dir, main page]
More Web Proxy on the site http://driver.im/Ir al contenido

Cono (topología)

De Wikipedia, la enciclopedia libre
Cono de un espacio topológico. El espacio original está pintado de rojo.

En topología y, en particular, en topología algebraica, el cono de un espacio topológico es el espacio cociente siguiente:

Intuitivamente, se forma un cilindro con base y se identifican todos los puntos de la cara superior en un solo punto, formando un cono.

Ejemplos

[editar]
  • El cono construido sobre un punto de la recta real es el segmento de .
  • El cono construido sobre dos puntos es un espacio "en forma de V" con extremos en 0 y 1.
  • El cono construido sobre un intervalo real es un triángulo plano (con su interior).
  • El cono construido sobre un polígono es una pirámide de base .
  • El cono construido sobre un disco es el cono sólido de la geometría clásica. De aquí recibe el nombre el concepto topológico.
  • El cono construido sobre una circunferencia es la superficie del cono anterior: . Este último es homeomorfo, proyectándolo sobre el plano XY, al disco .
  • Generalizando el ejemplo anterior, se tiene que , es decir, el cono de una n-esfera es homeomorfo a una (n+1)-bola.
  • El cono construido sobre un n-símplex es un (n+1)-símplex.

Propiedades

[editar]

El cono de un espacio es contráctil (en particular, conexo por caminos y simplemente conexo) pues la identidad es homótopa a constante (igual al vértice del cono) por la homotopía dada por , donde denota la clase de equivalencia de por la relación de equivalencia por la que se hace el cociente .

El cono se usa en topología algebraica precisamente porque transforma cualquier espacio topológico en un subespacio de un espacio contráctil: .

Enlaces externos

[editar]

Referencias

[editar]