122 results sorted by ID
Crescent: Stronger Privacy for Existing Credentials
Christian Paquin, Guru-Vamsi Policharla, Greg Zaverucha
Applications
We describe Crescent, a construction and implementation of privacy-preserving credentials. The system works by upgrading the privacy features of existing credentials, such as JSON Web Tokens (JWTs) and Mobile Driver’s License (mDL) and as such does not require a new party to issue credentials. By using zero-knowledge proofs of possession of these credentials, we can add privacy features such as selective disclosure and unlinkability, without help from credential issuers. The system has...
Generic, Fast and Short Proofs for Composite Statements
Zhuo Wu, Shi Qi, Xinxuan Zhang, Yi Deng
Cryptographic protocols
This work introduces a novel technique to enhance the efficiency of proving composite statements. We present the \textit{Hash-and-Prove} framework to construct zkSNARKs for proving satisfiability of arithmetic circuits with additional \textit{Algebraic Gate}. These algebraic gates serve as building blocks for forming more generalized relations in algebra. Unlike Pedersen-committed \textit{Commit-and-Prove} SNARKs, which suffer from increased proof size and verification overhead when proving...
Shifting our knowledge of MQ-Sign security
Lars Ran, Monika Trimoska
Attacks and cryptanalysis
Unbalanced Oil and Vinegar (UOV) is one of the oldest, simplest, and most studied ad-hoc multivariate signature schemes. UOV signature schemes are attractive because they have very small signatures and fast verification. On the downside, they have large public and secret keys. As a result, variations of the traditional UOV scheme are usually developed with the goal to reduce the key sizes. Seven variants of UOV were submitted to the additional call for digital signatures by NIST, prior to...
Fast Two-party Threshold ECDSA with Proactive Security
Brian Koziel, S. Dov Gordon, Craig Gentry
Cryptographic protocols
We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme of Lindell and improving his scheme in several ways.
ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the signing function. Lindell's scheme uses Paillier encryption to encrypt one party's key share and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero knowledge proofs over the Paillier group during the signing process. However,...
PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless Communications
Yang Yang, Robert H. Deng, Guomin Yang, Yingjiu Li, HweeHwa Pang, Minming Huang, Rui Shi, Jian Weng
Cryptographic protocols
Service discovery is essential in wireless communications. However, existing service discovery protocols provide no or very limited privacy protection for service providers and clients, and they often leak sensitive information (e.g., service type, client’s identity and mobility pattern), which leads to various network-based attacks (e.g., spoofing, man-in-the-middle, identification and tracking). In this paper, we propose a private service discovery protocol, called PriSrv, which allows a...
PQNTRU: Acceleration of NTRU-based Schemes via Customized Post-Quantum Processor
Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang, Guangyan Li, Donglong Chen, Ray C.C. Cheung, Kejie Huang
Implementation
Post-quantum cryptography (PQC) has rapidly evolved in response to the emergence of quantum computers, with the US National Institute of Standards and Technology (NIST) selecting four finalist algorithms for PQC standardization in 2022, including the Falcon digital signature scheme. The latest round of digital signature schemes introduced Hawk, both based on the NTRU lattice, offering compact signatures, fast generation, and verification suitable for deployment on resource-constrained...
HTCNN: High-Throughput Batch CNN Inference with Homomorphic Encryption for Edge Computing
Zewen Ye, Tianshun Huang, Tianyu Wang, Yonggen Li, Chengxuan Wang, Ray C.C. Cheung, Kejie Huang
Public-key cryptography
Homomorphic Encryption (HE) technology allows for processing encrypted data, breaking through data isolation barriers and providing a promising solution for privacy-preserving computation. The integration of HE technology into Convolutional Neural Network (CNN) inference shows potential in addressing privacy issues in identity verification, medical imaging diagnosis, and various other applications. The CKKS HE algorithm stands out as a popular option for homomorphic CNN inference due to its...
zkFFT: Extending Halo2 with Vector Commitments & More
Aram Jivanyan, Gohar Hovhannisyan, Hayk Hovhannisyan, Nerses Asaturyan
Cryptographic protocols
This paper introduces zkFFT, a novel zero-knowledge argument designed to efficiently generate proofs for FFT (Fast Fourier Transform) relations. Our approach enables the verification that one committed vector is the FFT of another, addressing an efficiency need in general-purpose non-interactive zero-knowledge proof systems where the proof relation utilizes vector commitments inputs.
We present a concrete enhancement to the Halo2 proving system, demonstrating how zkFFT optimizes proofs in...
Blaze: Fast SNARKs from Interleaved RAA Codes
Martijn Brehm, Binyi Chen, Ben Fisch, Nicolas Resch, Ron D. Rothblum, Hadas Zeilberger
Cryptographic protocols
In this work we construct a new and highly efficient multilinear polynomial commitment scheme (MLPCS) over binary fields, which we call \emph{Blaze}. Polynomial commitment schemes allow a server to commit to a large polynomial and later decommit to its evaluations. Such schemes have emerged as a key component in recent efficient SNARK constructions.
Blaze has an extremely efficient prover, both asymptotically and concretely. The commitment is dominated by $8n$ field additions...
WHIR: Reed–Solomon Proximity Testing with Super-Fast Verification
Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, Eylon Yogev
Cryptographic protocols
We introduce WHIR, a new IOP of proximity that offers small query complexity and exceptionally fast verification time. The WHIR verifier typically runs in a few hundred microseconds, whereas other verifiers in the literature require several milliseconds (if not much more). This significantly improves the state of the art in verifier time for hash-based SNARGs (and beyond).
Crucially, WHIR is an IOP of proximity for constrained Reed–Solomon codes, which can express a rich class of queries to...
SIGNITC: Supersingular Isogeny Graph Non-Interactive Timed Commitments
Knud Ahrens
Public-key cryptography
Non-Interactive Timed Commitment schemes (NITC) allow to open any commitment after a specified delay $t_{\mathrm{fd}}$. This is useful for sealed bid auctions and as primitive for more complex protocols. We present the first NITC without repeated squaring or theoretical black box algorithms like NIZK proofs or one-way functions. It has fast verification, almost arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our protocol is based on isogenies between supersingular elliptic...
Return of the Kummer: a Toolbox for Genus-2 Cryptography
Maria Corte-Real Santos, Krijn Reijnders
Public-key cryptography
This work expands the machinery we have for isogeny-based cryptography in genus 2 by developing a toolbox of several essential algorithms for Kummer surfaces, the dimension-2 analogue of $x$-only arithmetic on elliptic curves. Kummer surfaces have been suggested in hyper-elliptic curve cryptography since at least the 1980s and recently these surfaces have reappeared to efficiently compute $(2,2)$-isogenies. We construct several essential analogues of techniques used in one-dimensional...
Multi-Hop Multi-Key Homomorphic Signatures with Context Hiding from Standard Assumptions
Abtin Afshar, Jiaqi Cheng, Rishab Goyal
Public-key cryptography
Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...
INDIANA - Verifying (Random) Probing Security through Indistinguishability Analysis
Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich
Implementation
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process.
This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
2024/785
Last updated: 2024-06-02
SmartBean: Transparent, Concretely Efficient, Polynomial Commitment Scheme with Logarithmic Verification and Communication Costs that Runs on Any Group
Frank Y.C. Lu
Cryptographic protocols
We introduce a new, concretely efficient, transparent polynomial commitment scheme with logarithmic verification time and communication cost that can run on any group. Existing group-based polynomial commitment schemes must use less efficient groups, such as class groups of unknown order or pairing-based groups to achieve transparency (no trusted setup), making them expensive to adopt in practice.
We offer the first group-based polynomial commitment scheme that can run on any group s.t....
Ideal-to-isogeny algorithm using 2-dimensional isogenies and its application to SQIsign
Hiroshi Onuki, Kohei Nakagawa
Public-key cryptography
The Deuring correspondence is a correspondence between supersingular elliptic curves and quaternion orders. Under this correspondence, an isogeny between elliptic curves corresponds to a quaternion ideal. This correspondence plays an important role in isogeny-based cryptography and several algorithms to compute an isogeny corresponding to a quaternion ideal (ideal-to-isogeny algorithms) have been proposed. In particular, SQIsign is a signature scheme based on the Deuring correspondence and...
SQIsign2D-West: The Fast, the Small, and the Safer
Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert, Benjamin Wesolowski
Public-key cryptography
We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations.
SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but slower verification owing to the complexity of the four-dimensional representation. Its...
Vision Mark-32: ZK-Friendly Hash Function Over Binary Tower Fields
Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić
Implementation
Zero-knowledge proof systems are widely used in different applications on the Internet. Among zero-knowledge proof systems, SNARKs are a popular choice because of their fast verification time and small proof size. The efficiency of zero-knowledge systems is crucial for usability, resulting in the development of so-called arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32, a modified instance of Vision defined over binary tower fields, with an optimized number of...
Greco: Fast Zero-Knowledge Proofs for Valid FHE RLWE Ciphertexts Formation
Enrico Bottazzi
Cryptographic protocols
Fully homomorphic encryption (FHE) allows for evaluating arbitrary functions over encrypted data. In Multi-party FHE applications, different parties encrypt their secret data and submit ciphertexts to a server, which, according to the application logic, performs homomorphic operations on them. For example, in a secret voting application, the tally is computed by summing up the ciphertexts encoding the votes. Valid encrypted votes are of the form $E(0)$ and $E(1)$. A malicious voter could...
Statistical testing of random number generators and their improvement using randomness extraction
Cameron Foreman, Richie Yeung, Florian J. Curchod
Applications
Random number generators (RNGs) are notoriously hard to build and test, especially in a cryptographic setting. Although one cannot conclusively determine the quality of an RNG by testing the statistical properties of its output alone, running numerical tests is both a powerful verification tool and the only universally applicable method. In this work, we present and make available a comprehensive statistical testing environment (STE) that is based on existing statistical test suites. The STE...
Formal Verification of Emulated Floating-Point Arithmetic in Falcon
Vincent Hwang
Implementation
We show that there is a discrepancy between the emulated floating-point multiplication in the submission package of the digital signature Falcon and the claimed behavior. In particular, we show that some floating-point products with absolute values the smallest normal positive floating-point number are incorrectly zeroized. However, we show that the discrepancy doesn’t affect the complex fast Fourier transform in the signature generation of Falcon by modeling the floating-point addition,...
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, Hoeteck Wee
Cryptographic protocols
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...
Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis
Hoeteck Wee, David J. Wu
Foundations
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
Fast and Designated-verifier Friendly zkSNARKs in the BPK Model
Xudong Zhu, Xuyang Song, Yi Deng
Cryptographic protocols
After the pioneering results proposed by Bellare et al in ASIACRYPT 2016, there have been lots of efforts to construct zero-knowledge succinct non-interactive arguments of knowledge protocols (zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and standard soundness from the zk-SNARK in the common reference string (CRS) model. The various constructions could be regarded secure in the bare public key (BPK) model because of the equivalence between S-ZK in the CRS model, and uniform...
Don't Eject the Impostor: Fast Three-Party Computation With a Known Cheater (Full Version)
Andreas Brüggemann, Oliver Schick, Thomas Schneider, Ajith Suresh, Hossein Yalame
Cryptographic protocols
Secure multi-party computation (MPC) enables (joint) computations on sensitive data while maintaining privacy. In real-world scenarios, asymmetric trust assumptions are often most realistic, where one somewhat trustworthy entity interacts with smaller clients. We generalize previous two-party computation (2PC) protocols like MUSE (USENIX Security'21) and SIMC (USENIX Security'22) to the three-party setting (3PC) with one malicious party, avoiding the performance limitations of...
BaseFold: Efficient Field-Agnostic Polynomial Commitment Schemes from Foldable Codes
Hadas Zeilberger, Binyi Chen, Ben Fisch
Cryptographic protocols
This works introduces Basefold, a new $\textit{field-agnostic}$ Polynomial Commitment Scheme (PCS) for multilinear polynomials that has $O(\log^{2}(n))$ verifier costs and $O(n \log n)$ prover time. An important application of a multilinear PCS is constructing Succinct Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency in applications that require (or benefit from) a certain...
Faster Complete Formulas for the GLS254 Binary Curve
Thomas Pornin
Implementation
GLS254 is an elliptic curve defined over a finite field of characteristic 2; it contains a 253-bit prime order subgroup, and supports an endomorphism that can be efficiently computed and helps speed up some typical operations such as multiplication of a curve element by a scalar. That curve offers on x86 and ARMv8 platforms the best known performance for elliptic curves at the 128-bit security level.
In this paper we present a number of new results related to GLS254:
- We describe...
2023/1606
Last updated: 2023-11-01
Efficient Lattice-based Sublinear Arguments for R1CS without Aborts
Intak Hwang, Jinyeong Seo, Yongsoo Song
Cryptographic protocols
We propose a new lattice-based sublinear argument for R1CS that not only achieves efficiency in concrete proof size but also demonstrates practical performance in both proof generation and verification.
To reduce the proof size, we employ a new encoding method for large prime fields, resulting in a compact proof for R1CS over such fields.
We also devise a new proof technique that randomizes the input message.
This results in fast proof generation performance, eliminating rejection...
AprèsSQI: Extra Fast Verification for SQIsign Using Extension-Field Signing
Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, Krijn Reijnders
Public-key cryptography
We optimise the verification of the SQIsign signature scheme. By using field extensions in the signing procedure, we are able to significantly increase the amount of available rational $2$-power torsion in verification, which achieves a significant speed-up. This, moreover, allows several other speed-ups on the level of curve arithmetic. We show that the synergy between these high-level and low-level improvements gives significant improvements, making verification $2.07$ times faster, or up...
Towards a Quantum-resistant Weak Verifiable Delay Function
Thomas Decru, Luciano Maino, Antonio Sanso
Cryptographic protocols
In this paper, we present a new quantum-resistant weak Verifiable Delay Function based on a purely algebraic construction. Its delay depends on computing a large-degree isogeny between elliptic curves, whereas its verification relies on the computation of isogenies between products of two elliptic curves. One of its major advantages is its expected fast verification time. However, it is important to note that the practical implementation of our theoretical framework poses significant...
DualDory: Logarithmic-Verifier Linkable Ring Signatures through Preprocessing
Jonathan Bootle, Kaoutar Elkhiyaoui, Julia Hesse, Yacov Manevich
Public-key cryptography
A linkable ring signature allows a user to sign anonymously on behalf of a group while ensuring that multiple signatures from the same user are detected. Applications such as privacy-preserving e-voting and e-cash can leverage linkable ring signatures to significantly improve privacy and anonymity guarantees. To scale to systems involving large numbers of users, short signatures with fast verification are a must. Concretely efficient ring signatures currently rely on a trusted authority...
Fast batched asynchronous distributed key generation
Jens Groth, Victor Shoup
Cryptographic protocols
We present new protocols for threshold Schnorr signatures that work in an asynchronous communication setting, providing robustness and optimal resilience. These protocols provide unprecedented performance in terms of communication and computational complexity. In terms of communication complexity, for each signature, a single party must transmit a few dozen group elements and scalars across the network (independent of the size of the signing committee). In terms of computational...
Post Quantum Fuzzy Stealth Signatures and Applications
Sihang Pu, Sri AravindaKrishnan Thyagarajan, Nico Döttling, Lucjan Hanzlik
Public-key cryptography
Private payments in blockchain-based cryptocurrencies have been a topic of research, both academic and industrial, ever since the advent of Bitcoin. Stealth address payments were proposed as a solution to improve payment privacy for users and are, in fact, deployed in several major cryptocurrencies today. The mechanism lets users receive payments so that none of these payments are linkable to each other or the recipient. Currently known stealth address mechanisms either (1) are insecure in...
HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme
Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, Jean-Pierre Seifert
Implementation
MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures...
DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and Nothing More
Sofía Celi, Alex Davidson, Hamed Haddadi, Gonçalo Pestana, Joe Rowell
Applications
We design DiStefano: an efficient, maliciously-secure framework for generating private commitments over TLS-encrypted web traffic, for verification by a designated third-party. DiStefano provides many improvements over previous TLS commitment systems, including: a modular protocol specific to TLS 1.3, support for arbitrary verifiable claims over encrypted data, client browsing history privacy amongst pre-approved TLS servers, and various optimisations to ensure fast online performance of the...
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy, Peter Scholl
Cryptographic protocols
We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE), with a technique we call VOLE-in-the-head, upgrading these protocols to support public...
Schnorr protocol in Jasmin
José Bacelar Almeida, Denis Firsov, Tiago Oliveira, Dominique Unruh
Implementation
We implement the Schnorr protocol in assembler via the Jasmin toolchain, and prove the security (proof-of-knowledge and zero-knowledge properties) and the absence of leakage through timing side-channels of that implementation in EasyCrypt.
In order to do so, we provide a semantic characterization of leakage-freeness for probabilistic Jasmin programs (that are not constant-time). We design a library for multiple-precision integer arithmetic in Jasmin -- the "libjbn'' library. Among others,...
stoRNA: Stateless Transparent Proofs of Storage-time
Reyhaneh Rabaninejad, Behzad Abdolmaleki, Giulio Malavolta, Antonis Michalas, Amir Nabizadeh
Cryptographic protocols
Proof of Storage-time (PoSt) is a cryptographic primitive
that enables a server to demonstrate non-interactive continuous avail-
ability of outsourced data in a publicly verifiable way. This notion was
first introduced by Filecoin to secure their Blockchain-based decentral-
ized storage marketplace, using expensive SNARKs to compact proofs.
Recent work [2] employs the notion of trapdoor delay function to address
the problem of compact PoSt without SNARKs. This approach however
entails...
2023/360
Last updated: 2023-06-05
Fast and Efficient Code-Based Digital Signature with Dual Inverse Matrix
Farshid Haidary Makoui, T. Aaron Gulliver, Mohammad Dakhilalian
Digital signatures ensure legitimate access through identity authentication. It is also used to build blocks in blockchains and to authenticate transactions. The Courtois-Finiasz-Sendrier (CFS) digital signature is a well-known code-based digital signature scheme based on the Niederreiter cryptosystem.
The CFS signature, however, is not widely used due to the long processing time required by its signing algorithm. Most code-based digital signature schemes are based on Niederreiter. The...
Efficient Aggregatable BLS Signatures with Chaum-Pedersen Proofs
Jeff Burdges, Oana Ciobotaru, Syed Lavasani, Alistair Stewart
Cryptographic protocols
BLS signatures have fast aggregated signature verification but slow individual signature verification. We propose a three part optimisation that dramatically reduces CPU time in large distributed system using BLS signatures: First, public keys should be given on both source groups $\mathbb{G}_1$ and $\mathbb{G}_2$, with a proof-of-possession check for correctness. Second, aggregated BLS signatures should carry their particular aggregate public key in $\mathbb{G}_2$, so that verifiers can do...
Avoiding Lock Outs: Proactive FIDO Account Recovery using Managerless Group Signatures
Sunpreet S. Arora, Saikrishna Badrinarayanan, Srinivasan Raghuraman, Maliheh Shirvanian, Kim Wagner, Gaven Watson
Cryptographic protocols
Passwords are difficult to remember, easy to guess and prone to hacking. While there have been several attempts to solve the aforementioned problems commonly associated with passwords, one of the most successful ones to date has been by the Fast Identity Online (FIDO) alliance. FIDO introduced a series of protocols that combine local authentication on a user device with remote validation on relying party servers using public-key cryptography.
One of the fundamental problems of FIDO...
Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP
Thibauld Feneuil
Public-key cryptography
The MPC-in-the-Head paradigm is a useful tool to build practical signature schemes. Many such schemes have been already proposed, relying on different assumptions. Some are relying on standard symmetric primitives like AES, some are relying on MPC-friendly primitives like LowMC or Rain, and some are relying on well-known hard problems like the syndrome decoding problem.
This work focuses on the third type of MPCitH-based signatures. Following the same methodology as the work of Feneuil,...
Enhanced pqsigRM: Code-Based Digital Signature Scheme with Short Signature and Fast Verification for Post-Quantum Cryptography
Jinkyu Cho, Jong-Seon No, Yongwoo Lee, Zahyun Koo, Young-Sik Kim
Public-key cryptography
We present a novel code-based digital signature scheme, called
Enhanced pqsigRM for post-quantum cryptography (PQC). This scheme
is based on modified Reed–Muller (RM) codes, which modified RM codes
with several security problems. Enhanced pqsigRM is a strengthened version
of pqsigRM, which was submitted to NIST PQC standardization in
round 1. The proposed scheme has the advantage of short signature size,
fast verification cycles. For 128 bits of classical security, the signature
size...
KaLi: A Crystal for Post-Quantum Security using Kyber and Dilithium
Aikata Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, Sujoy Sinha Roy
Implementation
Quantum computers pose a threat to the security of communications over the internet. This imminent risk has led to the standardization of cryptographic schemes for protection in a post-quantum scenario. We present a design methodology for future implementations of such algorithms. This is manifested using the NIST selected digital signature scheme CRYSTALS-Dilithium and key encapsulation scheme CRYSTALS-Kyber. A unified architecture, \crystal, is proposed that can perform key generation,...
2022/910
Last updated: 2022-07-21
Round Optimal Blind Signatures: Short Signatures with Post-Quantum Blindness
Shweta Agrawal, Jung Hee Cheon, Hyeongmin Choe, Damien Stehlé, Anshu Yadav
Public-key cryptography
Blind signatures are a fascinating primitive which allow a user to obtain signatures from a signer, while hiding the message. Tremendously useful, these have been studied extensively for decades. Yet, to the best of our knowledge, all concretely practical blind signatures rely on non-standard assumptions and/or achieve sub-optimal round complexity.
In this work, we provide an efficient, round-optimal (two-round) blind signature scheme from the hardness of the discrete log (DL) problem...
BalanceProofs: Maintainable Vector Commitments with Fast Aggregation
Weijie Wang, Annie Ulichney, Charalampos Papamanthou
Cryptographic protocols
We present BalanceProofs, the first vector commitment that is maintainable (i.e., supporting sublinear updates) while also enjoying fast proof aggregation and verification. The basic version of BalanceProofs has $O(\sqrt{n}\log n)$ update time and $O(\sqrt{n})$ query time and its constant-size aggregated proofs can be produced and verified in milliseconds. In particular, BalanceProofs improves the aggregation time and aggregation verification time of the only known maintainable and...
Shorter Hash-and-Sign Lattice-Based Signatures
Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, Yang Yu
Public-key cryptography
Lattice-based digital signature schemes following the hash-and-sign design paradigm of Gentry, Peikert and Vaikuntanathan (GPV) tend to offer an attractive level of efficiency, particularly when instantiated with structured compact trapdoors. In particular, NIST postquantum finalist Falcon is both quite fast for signing and verification and quite compact: NIST notes that it has the smallest bandwidth (as measured in combined size of public key and signature) of all round 2 digital signature...
SPHINCS+C: Compressing SPHINCS+ With (Almost) No Cost
Mikhail Kudinov, Andreas Hülsing, Eyal Ronen, Eylon Yogev
Public-key cryptography
SPHINCS+~[CCS '19] is one of the selected post-quantum digital signature schemes of NIST's post-quantum standardization process. The scheme is a hash-based signature and is considered one of the most secure and robust proposals. The proposal includes a fast (but large) variant and a small (but costly) variant for each security level. The main problem that might hinder its adoption is its large signature size. Although SPHINCS+ supports a trade-off between signature size and the computational...
Fast signing method in RSA with high speed verification
GyuChol. Kim, YongBok. Jong
In this paper, we propose the method to speed up signature generation in RSA with small public exponent. We first divide the signing algorithm into two stages. One is message generating stage and the other is signing stage. Next, we modify the RSA signature so that the bulk of the calculation cost is allocated to message generating stage. This gives the possibility to propose the RSA signature schemes which have fast signature generation and very fast verification. Our schemes are suited for...
Post-Quantum Signatures on RISC-V with Hardware Acceleration
Patrick Karl, Jonas Schupp, Tim Fritzmann, Georg Sigl
Implementation
CRYSTALS-Dilithium and Falcon are digital signature algorithms based on cryptographic lattices, that are considered secure even if large-scale quantum computers will be able to break conventional public-key cryptography. Both schemes have been selected for standardization in the NIST post-quantum competition. In this work, we present a RISC-V HW/SW odesign that aims to combine the advantages of software- and hardware implementations, i.e. flexibility and performance. It shows the use of ...
We Can Make Mistakes: Fault-tolerant Forward Private Verifiable Dynamic Searchable Symmetric Encryption
Dandan Yuan, Shujie Cui, Giovanni Russello
Cryptographic protocols
Verifiable Dynamic Searchable Symmetric Encryption (VDSSE) enables users to securely outsource databases (document sets) to cloud servers and perform searches and updates. The verifiability property prevents users from accepting incorrect search results returned by a malicious server. However, we discover that the community currently only focuses on preventing malicious behavior from the server but ignores incorrect updates from the client, which are very likely to happen since there is no...
SPHINCS-$\alpha$: A Compact Stateless Hash-Based Signature Scheme
Kaiyi Zhang, Hongrui Cui, Yu Yu
Public-key cryptography
Hash-based signatures offer a conservative alternative to post-quantum signatures with arguably better-understood security than other post-quantum candidates. Nevertheless, a major drawback that makes it less favorable to deploy in practice is the (relatively) large size of the signatures, and long signing and verification time.
In this paper, we introduce SPHINCS-$\alpha$, a stateless hash-based signature scheme, which benefits from a twofold improvement. First, we provide an improved...
A compiler for multi-key homomorphic signatures for Turing machines
Somayeh Dolatnezhad Samarin, Dario Fiore, Daniele Venturi, Morteza Amini
Foundations
At SCN 2018, Fiore and Pagnin proposed a generic compiler (called ``Matrioska'') allowing to transform sufficiently expressive single-key homomorphic signatures (SKHSs) into multi-key homomorphic signatures (MKHSs) under falsifiable assumptions in the standard model. Matrioska is designed for homomorphic signatures that support programs represented as circuits. The MKHS schemes obtained through Matrioska support the evaluation and verification of arbitrary circuits over data signed from...
z-OTS: a one-time hash-based digital signaturescheme with fast verification
Amos Zheng, Marcos A. Simplicio Jr.
Public-key cryptography
Hash-based signature schemes are a class of post-quantum algorithms usually built upon one-time signature (OTS) solutions via hash-trees. The benefits of such schemes include small key sizes, efficient processing and the fact that they are simple to implement using a regular hash algorithm. In addition, their security properties are quite well understood, since they rely basically on the pre-image or collision resistance of the underlying hash function. Among the existing OTS schemes, W-OTS+...
Wavelet: Code-based postquantum signatures with fast verification on microcontrollers
Gustavo Banegas, Thomas Debris-Alazard, Milena Nedeljković, Benjamin Smith
Implementation
This work presents the first full implementation of Wave, a postquantum code-based signature scheme. We define Wavelet, a concrete Wave scheme at the 128-bit classical security level (or NIST postquantum security Level 1) equipped
with a fast verification algorithm targeting embedded devices. Wavelet offers 930-byte signatures, with a public key of 3161 kB. We include implementation details using AVX instructions, and on ARM Cortex-M4, including a solution to deal with
Wavelet’s large public...
Saidoyoki: Evaluating side-channel leakage in pre- and post-silicon setting
Pantea Kiaei, Zhenyuan Liu, Ramazan Kaan Eren, Yuan Yao, Patrick Schaumont
Implementation
Predicting the level and exploitability of side-channel leakage from complex SoC design is a challenging task. We present Saidoyoki, a test platform that enables the assessment of side-channel leakage under two different settings. The first is pre-silicon side-channel leakage estimation in SoC, and it requires the use of fast side-channel leakage estimation from a high level design description. The second is post-silicon side-channel leakage measurement and analysis in SoC, and it requires a...
Mithril: Stake-based Threshold Multisignatures
Pyrros Chaidos, Aggelos Kiayias
Cryptographic protocols
Stake-based multiparty cryptographic primitives operate in a setting where participants are associated with their stake, security is argued against an adversary that is bounded by the total stake it possesses —as opposed to number of parties— and we are interested in scalability, i.e., the complexity of critical operations depends only logarithmically in the number of participants (who are assumed to be numerous).
In this work we put forth a new stake-based primitive, stake-based...
Hyperproofs: Aggregating and Maintaining Proofs in Vector Commitments
Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, Yupeng Zhang
We present Hyperproofs, the first vector commitment (VC) scheme that is efficiently maintainable and aggregatable.
Similar to Merkle proofs, our proofs form a tree that can be efficiently maintained: updating all $n$ proofs in the tree after a single leaf change only requires $O(\log{n})$ time.
Importantly, unlike Merkle proofs, Hyperproofs are efficiently aggregatable, anywhere from $10\times$ to $41\times$ faster than SNARK-based aggregation of Merkle proofs.
At the same time, an...
Rainbow on Cortex-M4
Tung Chou, Matthias J. Kannwischer, Bo-Yin Yang
Implementation
We present the first Cortex-M4 implementation of the NISTPQC signature finalist Rainbow. We target the Giant Gecko EFM32GG11B which comes with 512 kB of RAM which can easily accommodate the keys of RainbowI. We present fast constant-time bitsliced F_16 multiplication allowing multiplication of 32 field elements in 32 clock cycles. Additionally, we introduce a new way of computing the public map P in the verification procedure allowing vastly faster signature verification.
Both the signing...
New Practical Multivariate Signatures from a Nonlinear Modifier
Daniel Smith-Tone
Public-key cryptography
Multivariate cryptography is dominated by schemes supporting various tweaks, or ``modifiers,'' designed to patch certain algebraic weaknesses they would otherwise exhibit. Typically these modifiers are linear in nature--- either requiring an extra composition with an affine map, or being evaluated by a legitimate user via an affine projection. This description applies to the minus, plus, vinegar and internal perturbation modifiers, to name a few. Though it is well-known that combinations...
Banquet: Short and Fast Signatures from AES
Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, Greg Zaverucha
Public-key cryptography
In this work we introduce Banquet, a digital signature scheme with post-quantum security, constructed using only symmetric-key primitives. The design is based on the MPC-in-head paradigm also used by Picnic (CCS 2017) and BBQ (SAC 2019).
Like BBQ, Banquet uses only standardized primitives, namely AES and SHA-3, but signatures are more than 50% shorter, making them competitive with Picnic (which uses a non-standard block cipher to improve performance).
The MPC protocol in Banquet uses a new...
Proofs of non-Supermajority: the missing link for two-phase BFT with responsive view-change and linear complexity
Christophe Levrat, Matthieu Rambaud
Applications
We consider leader-based Byzantine state machine replication, a.k.a. "BFT", under partial synchrony. We provide a generic solution enabling to match simultaneously, for the first time, three arguably gold standards of BFT: in two phases, with a responsive view change and a linear complexity per view.
It is based on a new threshold primitive, which we call Proofs of non-Supermajority (or PnS for short). A PnS system enables players, each with an input number, to report their input to a...
New (k,l,m)-verifiable multi-secret sharing schemes based on XTR public key system
Jing Yang, Fang-Wei Fu
Cryptographic protocols
Secret sharing was proposed primarily in 1979 to solve the problem of key distribution. In recent decades, researchers have proposed many improvement schemes. Among all these schemes, the verifiable multi-secret sharing (VMSS) schemes are studied sufficiently, which share multiple secrets simultaneously and perceive malicious dealer as well as participants. By pointing out that the schemes presented by Dehkordi and Mashhadi in 2008 cannot detect some vicious behaviors of the dealer, we...
On Succinct Arguments and Witness Encryption from Groups
Ohad Barta, Yuval Ishai, Rafail Ostrovsky, David J. Wu
Foundations
Succinct non-interactive arguments (SNARGs) enable proofs of NP statements with very low communication. Recently, there has been significant work in both theory and practice on constructing SNARGs with very short proofs. Currently, the state-of-the-art in succinctness is due to Groth (Eurocrypt 2016) who constructed a SNARG from bilinear maps where the proof consists of just 3 group elements.
In this work, we first construct a concretely-efficient designated-verifier (preprocessing) SNARG...
Quarks: Quadruple-efficient transparent zkSNARKs
Srinath Setty, Jonathan Lee
Cryptographic protocols
We introduce Xiphos and Kopis, new transparent zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) for R1CS. They do not require a trusted setup, and their security relies on the standard SXDH problem. They achieve non-interactivity in the random oracle model using the Fiat-Shamir transform. Unlike prior transparent zkSNARKs, which support either a fast prover, short proofs, or quick verification, our work is the first to simultaneously achieve all three properties...
Rapidly Verifiable XMSS Signatures
Joppe W. Bos, Andreas Hülsing, Joost Renes, Christine van Vredendaal
Applications
This work presents new speed records for XMSS (RFC 8391) signature verification on embedded devices. For this we make use of a probabilistic method recently proposed by Perin, Zambonin, Martins, Custodio, and Martina (PZMCM) at ISCC 2018, that changes the XMSS signing algorithm to search for fast verifiable signatures. We improve the method, ensuring that the added signing cost for the search is independent of the message length. We provide a statistical analysis of the...
Direct Sum Masking as a Countermeasure to Side-Channel and Fault Injection Attacks
Claude Carlet, Sylvain Guilley, Sihem Mesnager
Implementation
Internet of Things is developing at a very fast rate. In order to ensure security and privacy, end-devices (e.g. smartphones, smart sensors, or any connected smartcards) shall be protected both against cyber attacks (coming down from the network) and against physical attacks (arising from attacker low-level interaction with the device).
In this context, proactive protections shall be put in place to mitigate information theft from either side-channel monitoring or active computation/data...
New Complexity Estimation on the Rainbow-Band-Separation Attack
Shuhei Nakamura, Yasuhiko Ikematsu, Yacheng Wang, Jintai Ding, Tsuyoshi Takagi
Public-key cryptography
Multivariate public key cryptography is a candidate for post-quantum cryptography, and it allows generating particularly short signatures and fast verification.
The Rainbow signature scheme proposed by J. Ding and D. Schmidt is such a multivariate cryptosystem and is considered secure against all known attacks.
The Rainbow-Band-Separation attack recovers a secret key of Rainbow by solving certain systems of quadratic equations, and its complexity is estimated by the well-known indicator...
ALBATROSS: publicly AttestabLe BATched Randomness based On Secret Sharing
Ignacio Cascudo, Bernardo David
Cryptographic protocols
In this paper we present ALBATROSS, a family of multiparty randomness generation protocols with guaranteed output delivery and public verification that allows to trade off corruption tolerance for a much improved amortized computational complexity. Our basic stand alone protocol is based on publicly verifiable secret sharing (PVSS) and is secure under in the random oracle model under the decisional Diffie-Hellman (DDH) hardness assumption.
We also address the important issue of constructing...
Optimized Lattice Basis Reduction In Dimension 2, and Fast Schnorr and EdDSA Signature Verification
Thomas Pornin
Implementation
We present an optimization of Lagrange's algorithm for lattice basis
reduction in dimension 2. The optimized algorithm is proven to be
correct and to always terminate with quadratic complexity; it uses more
iterations on average than Lagrange's algorithm, but each iteration is
much simpler to implement, and faster. The achieved speed is such that
it makes application of the speed-up on ECDSA and EC Schnorr signatures
described by Antipa et al worthwhile, even for very fast curves such...
Stacked Garbling for Disjunctive Zero-Knowledge Proofs
David Heath, Vladimir Kolesnikov
Cryptographic protocols
Zero-knowledge (ZK) proofs receive wide attention, especially with respect to non-interactivity, small proof size, and fast verification. We instead focus on fast total proof time, in particular for large Boolean circuits. Under this metric, Garbled Circuit (GC)-based ZK, originally proposed by Jawurek et al. ([JKO], CCS 2013), remains state-of-the-art due to the low-constant linear scaling of garbling.
We improve GC-ZK for proof statements with conditional clauses. Our communication is...
Efficient Elliptic Curve Operations On Microcontrollers With Finite Field Extensions
Thomas Pornin
Public-key cryptography
In order to obtain an efficient elliptic curve with 128-bit security and
a prime order, we explore the use of finite fields $GF(p^n)$, with $p$
a small modulus (less than $2^{16}$) and $n$ a prime. Such finite fields
allow for an efficient inversion algorithm due to Itoh and Tsujii, which
we can leverage to make computations on an ordinary curve (short
Weierstraß equation) in affine coordinates. We describe a very efficient
variant of Montgomery reduction for computations modulo $p$, and...
A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography
Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Farnoud Farahmand, Ekawat Homsirikamol, Kris Gaj
Implementation
In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The...
Linear-Size Constant-Query IOPs for Delegating Computation
Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, Nicholas Spooner
Foundations
We study the problem of delegating computations via interactive proofs that can be probabilistically checked. Known as *interactive oracle proofs* (IOPs), these proofs extend probabilistically checkable proofs (PCPs) to multi-round protocols, and have received much attention due to their application to constructing cryptographic proofs (such as succinct non-interactive arguments).
We prove that a rich class of NEXP-complete problems, which includes machine computations over large fields and...
Fast verification of masking schemes in characteristic two
Nicolas Bordes, Pierre Karpman
We revisit the matrix model for non-interference (NI) probing security of masking gadgets introduced by Belaïd et al. at CRYPTO 2017. This leads to two main results.
1) We generalise the theorems on which this model is based, so as to be able to apply them to masking schemes over any finite field --- in particular GF(2)--- and to be able to analyse the strong non-interference (SNI) security notion. We also follow Faust et al. (TCHES 2018) to additionally consider a robust probing model that...
Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS
Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, Nicholas Ward
Foundations
We present a methodology to construct preprocessing zkSNARKs where the structured reference string (SRS) is universal and updatable. This exploits a novel use of *holography* [Babai et al., STOC 1991], where fast verification is achieved provided the statement being checked is given in encoded form.
We use our methodology to obtain a preprocessing zkSNARK where the SRS has linear size and arguments have constant size. Our construction improves on Sonic [Maller et al., CCS 2019], the prior...
TICK: Tiny Client for Blockchains
Wei Zhang, Jiangshan Yu, Qingqiang He, Nan Zhang, Nan Guan
Cryptographic protocols
In Bitcoin-like systems, when a payee chooses to accept
zero-confirmation transactions, it needs to verify the validity of
the transaction. In particular, one of the steps is to verify that
each referred output of the transaction is not previously spent. The conventional
lightweight client design can only support such operation in the
complexity of O($N_T$), where $N_T$ is the total number
of transactions in the system. This is impractical for lightweight clients.
The latest proposals...
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider
Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud, Cedric Fournet, Natalia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, Christoph Wintersteiger, Santiago Zanella-Beguelin
Implementation
We present EverCrypt: a comprehensive collection of verified, high-performance cryptographic functionalities available via a carefully designed API. The API provably supports agility (choosing between multiple algorithms for the same functionality) and multiplexing (choosing between multiple implementations of the same algorithm). Through abstraction and zero-cost generic programming, we show how agility can simplify verification without sacrificing performance, and we demonstrate how C...
Design of Anonymous Endorsement System in Hyperledger Fabric
Subhra Mazumdar, Sushmita Ruj
Applications
Permissioned Blockchain has become quite popular with enterprises forming consortium since it prioritizes trust over privacy. One of the popular platforms for distributed ledger solution, Hyperledger Fabric, requires a transaction to be endorsed or approved by a group of special members known as endorsers before undergoing validation. To endorse a transaction, an endorser mentions its identity along with the signature so that it can be verified later. However, for certain transactions,...
Fast Keyed-Verification Anonymous Credentials on Standard Smart Cards
Jan Camenisch, Manu Drijvers, Petr Dzurenda, Jan Hajny
Cryptographic protocols
Cryptographic anonymous credential schemes allow users to prove their personal attributes, such as age, nationality, or the validity of a ticket or a pre-paid pass, while preserving their privacy, as such proofs are unlinkable and attributes can be selectively disclosed. Recently, Chase et al. (CCS 2014) observe that in such systems, a typical setup is that the credential issuer also serves as the verifier. They introduce keyed-verification credentials that are tailored to this setting. In...
Efficient Message Authentication Codes with Combinatorial Group Testing
Kazuhiko Minematsu
Secret-key cryptography
Message authentication code, MAC for short, is a symmetric-key cryptographic function for authenticity. A standard MAC verification only tells whether the message is valid or invalid, and thus we can not identify which part is corrupted in case of invalid message.
In this paper we study a class of MAC functions that enables to identify the part of corruption, which we call group testing MAC (GTM). This can be seen as an application of a classical (non-adaptive) combinatorial group testing to...
Function-Dependent Commitments from Homomorphic Authenticators
Lucas Schabhüser, Denis Butin, Johannes Buchmann
Public-key cryptography
In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. In this context, the recently introduced function-dependent commitments (FDCs) are the only approach providing both fast correctness verification, information-theoretic input-output privacy, and strong unforgeability.
Homomorphic authenticators--- the established approach to this problem ---do not provide information-theoretic privacy and always reveal the...
More Efficient Algorithms for the NTRU Key Generation using the Field Norm
Thomas Pornin, Thomas Prest
Public-key cryptography
NTRU lattices are a class of polynomial rings which allow for compact and efficient representations of the lattice basis, thereby offering very good performance characteristics for the asymmetric algorithms that use them. Signature algorithms based on NTRU lattices have fast signature generation and verification, and relatively small signatures, public keys and private keys.
A few lattice-based cryptographic schemes entail, generally during the key generation, solving the NTRU...
TACHYON: Fast Signatures from Compact Knapsack
Rouzbeh Behnia, Muslum Ozgur Ozmen, Attila A. Yavuz, Mike Rosulek
Public-key cryptography
We introduce a simple, yet efficient digital signature scheme which offers post-quantum security promise. Our scheme, named $\texttt{TACHYON}$, is based on a novel approach for extending one-time hash-based signatures to (polynomially bounded) many-time signatures, using the additively homomorphic properties of generalized compact knapsack functions. Our design permits $\texttt{TACHYON}$ to achieve several key properties. First, its signing and verification algorithms are the fastest...
Tight Proofs of Space and Replication
Ben Fisch
We construct a concretely practical proof-of-space (PoS) with arbitrarily tight security based on stacked depth robust graphs and constant-degree expander graphs. A proof-of-space (PoS) is an interactive proof system where a prover demonstrates that it is persistently using space to store information. A PoS is arbitrarily tight if the honest prover uses exactly N space and for any $\epsilon > 0$ the construction can be tuned such that no adversary can pass verification using less than...
Function-Dependent Commitments for Verifiable Multi-Party Computation
Lucas Schabhüser, Denis Butin, Denise Demirel, Johanens Buchmann
Public-key cryptography
In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. Existing solutions do not simultaneously provide fast correctness verification, strong security properties, and information-theoretic confidentiality. We introduce a novel approach, in the form of function-dependent commitments, that combines these strengths. We also provide an instantiation of function-dependent commitments for linear functions that is...
G-Merkle: A Hash-Based Group Signature Scheme From Standard Assumptions
Rachid El Bansarkhani, Rafael Misoczki
Public-key cryptography
Hash-based signature schemes are the most promising cryptosystem candidates in a post-quantum world, but offer little structure to enable more sophisticated constructions such as group signatures.
Group signatures allow a group member to anonymously sign messages on behalf of the whole group (as needed for anonymous remote attestation).
In this work, we introduce G-Merkle, the first (stateful) hash-based group signature scheme.
Our proposal relies on minimal assumptions, namely the existence...
Scalable, transparent, and post-quantum secure computational integrity
Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, Michael Riabzev
Human dignity demands that personal information, like medical and forensic data, be hidden from the public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit by parties entrusted with Data, unjustly harming citizens and eroding trust in central institutions.
Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to the tension between the ideals of personal privacy and institutional integrity, enforcing the latter in a way...
Compact Energy and Delay-Aware Authentication
Muslum Ozgur Ozmen, Rouzbeh Behnia, Attila A. Yavuz
Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for...
Anonymous Single-Round Server-Aided Verification
Elena Pagnin, Aikaterini Mitrokotsa, Keisuke Tanaka
Public-key cryptography
Server-Aided Verification (SAV) is a method that can be employed to speed up the process of verifying signatures by letting the verifier outsource part of its computation load to a third party. Achieving fast and reliable verification under the presence of an untrusted server is an attractive goal in cloud computing and internet of things scenarios.
In this paper, we describe a simple framework for SAV where the interaction between a verifier and an untrusted server happens via a...
Consensus from Signatures of Work
Juan A. Garay, Aggelos Kiayias, Giorgos Panagiotakos
Cryptographic protocols
Assuming the existence of a public-key infrastructure (PKI), digital signatures are a fundamental building block in the design of
secure consensus protocols
with optimal resilience.
More recently, with the advent of blockchain
protocols like Bitcoin, consensus has been considered in the ``permissionless''
setting where no authentication or even point-to-point communication is available.
Yet, despite some positive preliminary
results, there has been no attempt to formalize a
building block...
HACL*: A Verified Modern Cryptographic Library
Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche
Implementation
HACL* is a verified portable C cryptographic library that implements modern cryptographic primitives such as the ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC message authentication, SHA-256 and SHA-512 hash functions, the Curve25519 elliptic curve, and Ed25519 signatures.
HACL* is written in the F* programming language and then compiled to readable C code. The F* source code for each crypto- graphic primitive is verified for memory safety, mitigations against timing...
qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs
Joost Renes, Benjamin Smith
Public-key cryptography
qDSA is a high-speed, high-security signature scheme that facilitates implementations with a very small memory footprint, a crucial requirement for embedded systems and IoT devices, and that uses the same public keys as modern Diffie--Hellman schemes based on Montgomery curves (such as Curve25519) or Kummer surfaces. qDSA resembles an adaptation of EdDSA to the world of Kummer varieties, which are quotients of algebraic groups by \(\pm1\). Interestingly, qDSA does not require any full group...
Towards Easy Key Enumeration
Changhai Ou, Degang Sun, Zhu Wang, Xinping Zhou
Implementation
Key enumeration solutions are post-processing schemes for the output sequences of side channel distinguishers, the application of which are prevented by very large key candidate space and computation power requirements. The attacker may spend several days or months to enumerate a huge key space (e.g. $2^{40}$). In this paper, we aim at pre-processing and reducing the key candidate space by deleting impossible key candidates before enumeration. A new distinguisher named Group Collision Attack...
Universal Samplers with Fast Verification
Venkata Koppula, Andrew Poelstra, Brent Waters
Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry proposed a new primitive called universal samplers that allows oblivious sampling from arbitrary distributions, and showed how to construct universal samplers using indistinguishability obfuscation (iO) in the ROM.
One important limitation for applying universal samplers in practice is that the constructions are built upon indistinguishability obfuscation. The costs of using current iO constructions is prohibitively large. We ask...
Blockchain-Free Cryptocurrencies: A Framework for Truly Decentralised Fast Transactions
Xavier Boyen, Christopher Carr, Thomas Haines
The "blockchain" distributed ledger pioneered by Bitcoin is effective at preventing double-spending, but inherently attracts (1) "user cartels" and (2) incompressible delays, as a result of linear verification and a winner-takes-all incentive
lottery.
We propose to forgo the blocks and chain entirely, and build a truly distributed ledger system based on a lean graph of cross-verifying transactions, which now become the main and only objects in the system. A fully distributed consensus...
Efficient Beyond-Birthday-Bound-Secure Deterministic Authenticated Encryption with Minimal Stretch
Christian Forler, Eik List, Stefan Lucks, Jakob Wenzel
Secret-key cryptography
Block-cipher-based authenticated encryption has obtained considerable attention from the ongoing CAESAR competition. While the focus of CAESAR resides primarily on nonce-based authenticated encryption, Deterministic Authenticated Encryption (DAE) is used in domains such as key wrap, where the available message entropy motivates to omit the overhead for nonces. Since the highest possible security is desirable when protecting keys, beyond-birthday-bound (BBB) security is a valuable goal for...
Fast Oblivious AES\\A dedicated application of the MiniMac protocol
Ivan Damgård, Rasmus Winther Zakarias
Implementation
We present an actively secure multi-party computation the of the Advanced Encryption Standard (AES). To the best of our knowledge it is the fastest of its kind to date. We start from an efficient actively secure evaluation of general binary circuits that was implemented by the authors of [DLT14]. They presented an optimized implementation of the so-called MiniMac protocol [DZ13] that runs in the pre-processing model, and applied this to a binary AES circuit.
In this paper we describe how to...
Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem
Alex Biryukov, Dmitry Khovratovich
Proof-of-work is a central concept in modern cryptocurrencies and denial-of-service protection tools, but the requirement for fast verification so
far made it an easy prey for GPU-, ASIC-, and botnet-equipped users. The attempts to rely on
memory-intensive computations in order to remedy the disparity between architectures have
resulted in slow or broken schemes.
In this paper we solve this open problem and show how to construct an asymmetric proof-of-work (PoW) based on a computationally...
Trinocchio: Privacy-Friendly Outsourcing by Distributed Verifiable Computation
Berry Schoenmakers, Meilof Veeningen, Niels de Vreede
Verifiable computation allows a client to outsource computations to a worker with a cryptographic proof of correctness of the result that can be verified faster than performing the computation. Recently, the Pinocchio system achieved faster verification than computation in practice for the first time. Unfortunately, Pinocchio and other efficient verifiable computation systems require the client to disclose the inputs to the worker, which is undesirable for sensitive inputs. To solve this...
We describe Crescent, a construction and implementation of privacy-preserving credentials. The system works by upgrading the privacy features of existing credentials, such as JSON Web Tokens (JWTs) and Mobile Driver’s License (mDL) and as such does not require a new party to issue credentials. By using zero-knowledge proofs of possession of these credentials, we can add privacy features such as selective disclosure and unlinkability, without help from credential issuers. The system has...
This work introduces a novel technique to enhance the efficiency of proving composite statements. We present the \textit{Hash-and-Prove} framework to construct zkSNARKs for proving satisfiability of arithmetic circuits with additional \textit{Algebraic Gate}. These algebraic gates serve as building blocks for forming more generalized relations in algebra. Unlike Pedersen-committed \textit{Commit-and-Prove} SNARKs, which suffer from increased proof size and verification overhead when proving...
Unbalanced Oil and Vinegar (UOV) is one of the oldest, simplest, and most studied ad-hoc multivariate signature schemes. UOV signature schemes are attractive because they have very small signatures and fast verification. On the downside, they have large public and secret keys. As a result, variations of the traditional UOV scheme are usually developed with the goal to reduce the key sizes. Seven variants of UOV were submitted to the additional call for digital signatures by NIST, prior to...
We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme of Lindell and improving his scheme in several ways. ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the signing function. Lindell's scheme uses Paillier encryption to encrypt one party's key share and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero knowledge proofs over the Paillier group during the signing process. However,...
Service discovery is essential in wireless communications. However, existing service discovery protocols provide no or very limited privacy protection for service providers and clients, and they often leak sensitive information (e.g., service type, client’s identity and mobility pattern), which leads to various network-based attacks (e.g., spoofing, man-in-the-middle, identification and tracking). In this paper, we propose a private service discovery protocol, called PriSrv, which allows a...
Post-quantum cryptography (PQC) has rapidly evolved in response to the emergence of quantum computers, with the US National Institute of Standards and Technology (NIST) selecting four finalist algorithms for PQC standardization in 2022, including the Falcon digital signature scheme. The latest round of digital signature schemes introduced Hawk, both based on the NTRU lattice, offering compact signatures, fast generation, and verification suitable for deployment on resource-constrained...
Homomorphic Encryption (HE) technology allows for processing encrypted data, breaking through data isolation barriers and providing a promising solution for privacy-preserving computation. The integration of HE technology into Convolutional Neural Network (CNN) inference shows potential in addressing privacy issues in identity verification, medical imaging diagnosis, and various other applications. The CKKS HE algorithm stands out as a popular option for homomorphic CNN inference due to its...
This paper introduces zkFFT, a novel zero-knowledge argument designed to efficiently generate proofs for FFT (Fast Fourier Transform) relations. Our approach enables the verification that one committed vector is the FFT of another, addressing an efficiency need in general-purpose non-interactive zero-knowledge proof systems where the proof relation utilizes vector commitments inputs. We present a concrete enhancement to the Halo2 proving system, demonstrating how zkFFT optimizes proofs in...
In this work we construct a new and highly efficient multilinear polynomial commitment scheme (MLPCS) over binary fields, which we call \emph{Blaze}. Polynomial commitment schemes allow a server to commit to a large polynomial and later decommit to its evaluations. Such schemes have emerged as a key component in recent efficient SNARK constructions. Blaze has an extremely efficient prover, both asymptotically and concretely. The commitment is dominated by $8n$ field additions...
We introduce WHIR, a new IOP of proximity that offers small query complexity and exceptionally fast verification time. The WHIR verifier typically runs in a few hundred microseconds, whereas other verifiers in the literature require several milliseconds (if not much more). This significantly improves the state of the art in verifier time for hash-based SNARGs (and beyond). Crucially, WHIR is an IOP of proximity for constrained Reed–Solomon codes, which can express a rich class of queries to...
Non-Interactive Timed Commitment schemes (NITC) allow to open any commitment after a specified delay $t_{\mathrm{fd}}$. This is useful for sealed bid auctions and as primitive for more complex protocols. We present the first NITC without repeated squaring or theoretical black box algorithms like NIZK proofs or one-way functions. It has fast verification, almost arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our protocol is based on isogenies between supersingular elliptic...
This work expands the machinery we have for isogeny-based cryptography in genus 2 by developing a toolbox of several essential algorithms for Kummer surfaces, the dimension-2 analogue of $x$-only arithmetic on elliptic curves. Kummer surfaces have been suggested in hyper-elliptic curve cryptography since at least the 1980s and recently these surfaces have reappeared to efficiently compute $(2,2)$-isogenies. We construct several essential analogues of techniques used in one-dimensional...
Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process. This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
We introduce a new, concretely efficient, transparent polynomial commitment scheme with logarithmic verification time and communication cost that can run on any group. Existing group-based polynomial commitment schemes must use less efficient groups, such as class groups of unknown order or pairing-based groups to achieve transparency (no trusted setup), making them expensive to adopt in practice. We offer the first group-based polynomial commitment scheme that can run on any group s.t....
The Deuring correspondence is a correspondence between supersingular elliptic curves and quaternion orders. Under this correspondence, an isogeny between elliptic curves corresponds to a quaternion ideal. This correspondence plays an important role in isogeny-based cryptography and several algorithms to compute an isogeny corresponding to a quaternion ideal (ideal-to-isogeny algorithms) have been proposed. In particular, SQIsign is a signature scheme based on the Deuring correspondence and...
We introduce SQIsign2D-West, a variant of SQIsign using two-dimensional isogeny representations. SQIsignHD was the first variant of SQIsign to use higher dimensional isogeny representations. Its eight-dimensional variant is geared towards provable security but is deemed unpractical. Its four-dimensional variant is geared towards efficiency and has significantly faster signing times than SQIsign, but slower verification owing to the complexity of the four-dimensional representation. Its...
Zero-knowledge proof systems are widely used in different applications on the Internet. Among zero-knowledge proof systems, SNARKs are a popular choice because of their fast verification time and small proof size. The efficiency of zero-knowledge systems is crucial for usability, resulting in the development of so-called arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32, a modified instance of Vision defined over binary tower fields, with an optimized number of...
Fully homomorphic encryption (FHE) allows for evaluating arbitrary functions over encrypted data. In Multi-party FHE applications, different parties encrypt their secret data and submit ciphertexts to a server, which, according to the application logic, performs homomorphic operations on them. For example, in a secret voting application, the tally is computed by summing up the ciphertexts encoding the votes. Valid encrypted votes are of the form $E(0)$ and $E(1)$. A malicious voter could...
Random number generators (RNGs) are notoriously hard to build and test, especially in a cryptographic setting. Although one cannot conclusively determine the quality of an RNG by testing the statistical properties of its output alone, running numerical tests is both a powerful verification tool and the only universally applicable method. In this work, we present and make available a comprehensive statistical testing environment (STE) that is based on existing statistical test suites. The STE...
We show that there is a discrepancy between the emulated floating-point multiplication in the submission package of the digital signature Falcon and the claimed behavior. In particular, we show that some floating-point products with absolute values the smallest normal positive floating-point number are incorrectly zeroized. However, we show that the discrepancy doesn’t affect the complex fast Fourier transform in the signature generation of Falcon by modeling the floating-point addition,...
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
After the pioneering results proposed by Bellare et al in ASIACRYPT 2016, there have been lots of efforts to construct zero-knowledge succinct non-interactive arguments of knowledge protocols (zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and standard soundness from the zk-SNARK in the common reference string (CRS) model. The various constructions could be regarded secure in the bare public key (BPK) model because of the equivalence between S-ZK in the CRS model, and uniform...
Secure multi-party computation (MPC) enables (joint) computations on sensitive data while maintaining privacy. In real-world scenarios, asymmetric trust assumptions are often most realistic, where one somewhat trustworthy entity interacts with smaller clients. We generalize previous two-party computation (2PC) protocols like MUSE (USENIX Security'21) and SIMC (USENIX Security'22) to the three-party setting (3PC) with one malicious party, avoiding the performance limitations of...
This works introduces Basefold, a new $\textit{field-agnostic}$ Polynomial Commitment Scheme (PCS) for multilinear polynomials that has $O(\log^{2}(n))$ verifier costs and $O(n \log n)$ prover time. An important application of a multilinear PCS is constructing Succinct Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency in applications that require (or benefit from) a certain...
GLS254 is an elliptic curve defined over a finite field of characteristic 2; it contains a 253-bit prime order subgroup, and supports an endomorphism that can be efficiently computed and helps speed up some typical operations such as multiplication of a curve element by a scalar. That curve offers on x86 and ARMv8 platforms the best known performance for elliptic curves at the 128-bit security level. In this paper we present a number of new results related to GLS254: - We describe...
We propose a new lattice-based sublinear argument for R1CS that not only achieves efficiency in concrete proof size but also demonstrates practical performance in both proof generation and verification. To reduce the proof size, we employ a new encoding method for large prime fields, resulting in a compact proof for R1CS over such fields. We also devise a new proof technique that randomizes the input message. This results in fast proof generation performance, eliminating rejection...
We optimise the verification of the SQIsign signature scheme. By using field extensions in the signing procedure, we are able to significantly increase the amount of available rational $2$-power torsion in verification, which achieves a significant speed-up. This, moreover, allows several other speed-ups on the level of curve arithmetic. We show that the synergy between these high-level and low-level improvements gives significant improvements, making verification $2.07$ times faster, or up...
In this paper, we present a new quantum-resistant weak Verifiable Delay Function based on a purely algebraic construction. Its delay depends on computing a large-degree isogeny between elliptic curves, whereas its verification relies on the computation of isogenies between products of two elliptic curves. One of its major advantages is its expected fast verification time. However, it is important to note that the practical implementation of our theoretical framework poses significant...
A linkable ring signature allows a user to sign anonymously on behalf of a group while ensuring that multiple signatures from the same user are detected. Applications such as privacy-preserving e-voting and e-cash can leverage linkable ring signatures to significantly improve privacy and anonymity guarantees. To scale to systems involving large numbers of users, short signatures with fast verification are a must. Concretely efficient ring signatures currently rely on a trusted authority...
We present new protocols for threshold Schnorr signatures that work in an asynchronous communication setting, providing robustness and optimal resilience. These protocols provide unprecedented performance in terms of communication and computational complexity. In terms of communication complexity, for each signature, a single party must transmit a few dozen group elements and scalars across the network (independent of the size of the signing committee). In terms of computational...
Private payments in blockchain-based cryptocurrencies have been a topic of research, both academic and industrial, ever since the advent of Bitcoin. Stealth address payments were proposed as a solution to improve payment privacy for users and are, in fact, deployed in several major cryptocurrencies today. The mechanism lets users receive payments so that none of these payments are linkable to each other or the recipient. Currently known stealth address mechanisms either (1) are insecure in...
MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures...
We design DiStefano: an efficient, maliciously-secure framework for generating private commitments over TLS-encrypted web traffic, for verification by a designated third-party. DiStefano provides many improvements over previous TLS commitment systems, including: a modular protocol specific to TLS 1.3, support for arbitrary verifiable claims over encrypted data, client browsing history privacy amongst pre-approved TLS servers, and various optimisations to ensure fast online performance of the...
We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE), with a technique we call VOLE-in-the-head, upgrading these protocols to support public...
We implement the Schnorr protocol in assembler via the Jasmin toolchain, and prove the security (proof-of-knowledge and zero-knowledge properties) and the absence of leakage through timing side-channels of that implementation in EasyCrypt. In order to do so, we provide a semantic characterization of leakage-freeness for probabilistic Jasmin programs (that are not constant-time). We design a library for multiple-precision integer arithmetic in Jasmin -- the "libjbn'' library. Among others,...
Proof of Storage-time (PoSt) is a cryptographic primitive that enables a server to demonstrate non-interactive continuous avail- ability of outsourced data in a publicly verifiable way. This notion was first introduced by Filecoin to secure their Blockchain-based decentral- ized storage marketplace, using expensive SNARKs to compact proofs. Recent work [2] employs the notion of trapdoor delay function to address the problem of compact PoSt without SNARKs. This approach however entails...
Digital signatures ensure legitimate access through identity authentication. It is also used to build blocks in blockchains and to authenticate transactions. The Courtois-Finiasz-Sendrier (CFS) digital signature is a well-known code-based digital signature scheme based on the Niederreiter cryptosystem. The CFS signature, however, is not widely used due to the long processing time required by its signing algorithm. Most code-based digital signature schemes are based on Niederreiter. The...
BLS signatures have fast aggregated signature verification but slow individual signature verification. We propose a three part optimisation that dramatically reduces CPU time in large distributed system using BLS signatures: First, public keys should be given on both source groups $\mathbb{G}_1$ and $\mathbb{G}_2$, with a proof-of-possession check for correctness. Second, aggregated BLS signatures should carry their particular aggregate public key in $\mathbb{G}_2$, so that verifiers can do...
Passwords are difficult to remember, easy to guess and prone to hacking. While there have been several attempts to solve the aforementioned problems commonly associated with passwords, one of the most successful ones to date has been by the Fast Identity Online (FIDO) alliance. FIDO introduced a series of protocols that combine local authentication on a user device with remote validation on relying party servers using public-key cryptography. One of the fundamental problems of FIDO...
The MPC-in-the-Head paradigm is a useful tool to build practical signature schemes. Many such schemes have been already proposed, relying on different assumptions. Some are relying on standard symmetric primitives like AES, some are relying on MPC-friendly primitives like LowMC or Rain, and some are relying on well-known hard problems like the syndrome decoding problem. This work focuses on the third type of MPCitH-based signatures. Following the same methodology as the work of Feneuil,...
We present a novel code-based digital signature scheme, called Enhanced pqsigRM for post-quantum cryptography (PQC). This scheme is based on modified Reed–Muller (RM) codes, which modified RM codes with several security problems. Enhanced pqsigRM is a strengthened version of pqsigRM, which was submitted to NIST PQC standardization in round 1. The proposed scheme has the advantage of short signature size, fast verification cycles. For 128 bits of classical security, the signature size...
Quantum computers pose a threat to the security of communications over the internet. This imminent risk has led to the standardization of cryptographic schemes for protection in a post-quantum scenario. We present a design methodology for future implementations of such algorithms. This is manifested using the NIST selected digital signature scheme CRYSTALS-Dilithium and key encapsulation scheme CRYSTALS-Kyber. A unified architecture, \crystal, is proposed that can perform key generation,...
Blind signatures are a fascinating primitive which allow a user to obtain signatures from a signer, while hiding the message. Tremendously useful, these have been studied extensively for decades. Yet, to the best of our knowledge, all concretely practical blind signatures rely on non-standard assumptions and/or achieve sub-optimal round complexity. In this work, we provide an efficient, round-optimal (two-round) blind signature scheme from the hardness of the discrete log (DL) problem...
We present BalanceProofs, the first vector commitment that is maintainable (i.e., supporting sublinear updates) while also enjoying fast proof aggregation and verification. The basic version of BalanceProofs has $O(\sqrt{n}\log n)$ update time and $O(\sqrt{n})$ query time and its constant-size aggregated proofs can be produced and verified in milliseconds. In particular, BalanceProofs improves the aggregation time and aggregation verification time of the only known maintainable and...
Lattice-based digital signature schemes following the hash-and-sign design paradigm of Gentry, Peikert and Vaikuntanathan (GPV) tend to offer an attractive level of efficiency, particularly when instantiated with structured compact trapdoors. In particular, NIST postquantum finalist Falcon is both quite fast for signing and verification and quite compact: NIST notes that it has the smallest bandwidth (as measured in combined size of public key and signature) of all round 2 digital signature...
SPHINCS+~[CCS '19] is one of the selected post-quantum digital signature schemes of NIST's post-quantum standardization process. The scheme is a hash-based signature and is considered one of the most secure and robust proposals. The proposal includes a fast (but large) variant and a small (but costly) variant for each security level. The main problem that might hinder its adoption is its large signature size. Although SPHINCS+ supports a trade-off between signature size and the computational...
In this paper, we propose the method to speed up signature generation in RSA with small public exponent. We first divide the signing algorithm into two stages. One is message generating stage and the other is signing stage. Next, we modify the RSA signature so that the bulk of the calculation cost is allocated to message generating stage. This gives the possibility to propose the RSA signature schemes which have fast signature generation and very fast verification. Our schemes are suited for...
CRYSTALS-Dilithium and Falcon are digital signature algorithms based on cryptographic lattices, that are considered secure even if large-scale quantum computers will be able to break conventional public-key cryptography. Both schemes have been selected for standardization in the NIST post-quantum competition. In this work, we present a RISC-V HW/SW odesign that aims to combine the advantages of software- and hardware implementations, i.e. flexibility and performance. It shows the use of ...
Verifiable Dynamic Searchable Symmetric Encryption (VDSSE) enables users to securely outsource databases (document sets) to cloud servers and perform searches and updates. The verifiability property prevents users from accepting incorrect search results returned by a malicious server. However, we discover that the community currently only focuses on preventing malicious behavior from the server but ignores incorrect updates from the client, which are very likely to happen since there is no...
Hash-based signatures offer a conservative alternative to post-quantum signatures with arguably better-understood security than other post-quantum candidates. Nevertheless, a major drawback that makes it less favorable to deploy in practice is the (relatively) large size of the signatures, and long signing and verification time. In this paper, we introduce SPHINCS-$\alpha$, a stateless hash-based signature scheme, which benefits from a twofold improvement. First, we provide an improved...
At SCN 2018, Fiore and Pagnin proposed a generic compiler (called ``Matrioska'') allowing to transform sufficiently expressive single-key homomorphic signatures (SKHSs) into multi-key homomorphic signatures (MKHSs) under falsifiable assumptions in the standard model. Matrioska is designed for homomorphic signatures that support programs represented as circuits. The MKHS schemes obtained through Matrioska support the evaluation and verification of arbitrary circuits over data signed from...
Hash-based signature schemes are a class of post-quantum algorithms usually built upon one-time signature (OTS) solutions via hash-trees. The benefits of such schemes include small key sizes, efficient processing and the fact that they are simple to implement using a regular hash algorithm. In addition, their security properties are quite well understood, since they rely basically on the pre-image or collision resistance of the underlying hash function. Among the existing OTS schemes, W-OTS+...
This work presents the first full implementation of Wave, a postquantum code-based signature scheme. We define Wavelet, a concrete Wave scheme at the 128-bit classical security level (or NIST postquantum security Level 1) equipped with a fast verification algorithm targeting embedded devices. Wavelet offers 930-byte signatures, with a public key of 3161 kB. We include implementation details using AVX instructions, and on ARM Cortex-M4, including a solution to deal with Wavelet’s large public...
Predicting the level and exploitability of side-channel leakage from complex SoC design is a challenging task. We present Saidoyoki, a test platform that enables the assessment of side-channel leakage under two different settings. The first is pre-silicon side-channel leakage estimation in SoC, and it requires the use of fast side-channel leakage estimation from a high level design description. The second is post-silicon side-channel leakage measurement and analysis in SoC, and it requires a...
Stake-based multiparty cryptographic primitives operate in a setting where participants are associated with their stake, security is argued against an adversary that is bounded by the total stake it possesses —as opposed to number of parties— and we are interested in scalability, i.e., the complexity of critical operations depends only logarithmically in the number of participants (who are assumed to be numerous). In this work we put forth a new stake-based primitive, stake-based...
We present Hyperproofs, the first vector commitment (VC) scheme that is efficiently maintainable and aggregatable. Similar to Merkle proofs, our proofs form a tree that can be efficiently maintained: updating all $n$ proofs in the tree after a single leaf change only requires $O(\log{n})$ time. Importantly, unlike Merkle proofs, Hyperproofs are efficiently aggregatable, anywhere from $10\times$ to $41\times$ faster than SNARK-based aggregation of Merkle proofs. At the same time, an...
We present the first Cortex-M4 implementation of the NISTPQC signature finalist Rainbow. We target the Giant Gecko EFM32GG11B which comes with 512 kB of RAM which can easily accommodate the keys of RainbowI. We present fast constant-time bitsliced F_16 multiplication allowing multiplication of 32 field elements in 32 clock cycles. Additionally, we introduce a new way of computing the public map P in the verification procedure allowing vastly faster signature verification. Both the signing...
Multivariate cryptography is dominated by schemes supporting various tweaks, or ``modifiers,'' designed to patch certain algebraic weaknesses they would otherwise exhibit. Typically these modifiers are linear in nature--- either requiring an extra composition with an affine map, or being evaluated by a legitimate user via an affine projection. This description applies to the minus, plus, vinegar and internal perturbation modifiers, to name a few. Though it is well-known that combinations...
In this work we introduce Banquet, a digital signature scheme with post-quantum security, constructed using only symmetric-key primitives. The design is based on the MPC-in-head paradigm also used by Picnic (CCS 2017) and BBQ (SAC 2019). Like BBQ, Banquet uses only standardized primitives, namely AES and SHA-3, but signatures are more than 50% shorter, making them competitive with Picnic (which uses a non-standard block cipher to improve performance). The MPC protocol in Banquet uses a new...
We consider leader-based Byzantine state machine replication, a.k.a. "BFT", under partial synchrony. We provide a generic solution enabling to match simultaneously, for the first time, three arguably gold standards of BFT: in two phases, with a responsive view change and a linear complexity per view. It is based on a new threshold primitive, which we call Proofs of non-Supermajority (or PnS for short). A PnS system enables players, each with an input number, to report their input to a...
Secret sharing was proposed primarily in 1979 to solve the problem of key distribution. In recent decades, researchers have proposed many improvement schemes. Among all these schemes, the verifiable multi-secret sharing (VMSS) schemes are studied sufficiently, which share multiple secrets simultaneously and perceive malicious dealer as well as participants. By pointing out that the schemes presented by Dehkordi and Mashhadi in 2008 cannot detect some vicious behaviors of the dealer, we...
Succinct non-interactive arguments (SNARGs) enable proofs of NP statements with very low communication. Recently, there has been significant work in both theory and practice on constructing SNARGs with very short proofs. Currently, the state-of-the-art in succinctness is due to Groth (Eurocrypt 2016) who constructed a SNARG from bilinear maps where the proof consists of just 3 group elements. In this work, we first construct a concretely-efficient designated-verifier (preprocessing) SNARG...
We introduce Xiphos and Kopis, new transparent zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) for R1CS. They do not require a trusted setup, and their security relies on the standard SXDH problem. They achieve non-interactivity in the random oracle model using the Fiat-Shamir transform. Unlike prior transparent zkSNARKs, which support either a fast prover, short proofs, or quick verification, our work is the first to simultaneously achieve all three properties...
This work presents new speed records for XMSS (RFC 8391) signature verification on embedded devices. For this we make use of a probabilistic method recently proposed by Perin, Zambonin, Martins, Custodio, and Martina (PZMCM) at ISCC 2018, that changes the XMSS signing algorithm to search for fast verifiable signatures. We improve the method, ensuring that the added signing cost for the search is independent of the message length. We provide a statistical analysis of the...
Internet of Things is developing at a very fast rate. In order to ensure security and privacy, end-devices (e.g. smartphones, smart sensors, or any connected smartcards) shall be protected both against cyber attacks (coming down from the network) and against physical attacks (arising from attacker low-level interaction with the device). In this context, proactive protections shall be put in place to mitigate information theft from either side-channel monitoring or active computation/data...
Multivariate public key cryptography is a candidate for post-quantum cryptography, and it allows generating particularly short signatures and fast verification. The Rainbow signature scheme proposed by J. Ding and D. Schmidt is such a multivariate cryptosystem and is considered secure against all known attacks. The Rainbow-Band-Separation attack recovers a secret key of Rainbow by solving certain systems of quadratic equations, and its complexity is estimated by the well-known indicator...
In this paper we present ALBATROSS, a family of multiparty randomness generation protocols with guaranteed output delivery and public verification that allows to trade off corruption tolerance for a much improved amortized computational complexity. Our basic stand alone protocol is based on publicly verifiable secret sharing (PVSS) and is secure under in the random oracle model under the decisional Diffie-Hellman (DDH) hardness assumption. We also address the important issue of constructing...
We present an optimization of Lagrange's algorithm for lattice basis reduction in dimension 2. The optimized algorithm is proven to be correct and to always terminate with quadratic complexity; it uses more iterations on average than Lagrange's algorithm, but each iteration is much simpler to implement, and faster. The achieved speed is such that it makes application of the speed-up on ECDSA and EC Schnorr signatures described by Antipa et al worthwhile, even for very fast curves such...
Zero-knowledge (ZK) proofs receive wide attention, especially with respect to non-interactivity, small proof size, and fast verification. We instead focus on fast total proof time, in particular for large Boolean circuits. Under this metric, Garbled Circuit (GC)-based ZK, originally proposed by Jawurek et al. ([JKO], CCS 2013), remains state-of-the-art due to the low-constant linear scaling of garbling. We improve GC-ZK for proof statements with conditional clauses. Our communication is...
In order to obtain an efficient elliptic curve with 128-bit security and a prime order, we explore the use of finite fields $GF(p^n)$, with $p$ a small modulus (less than $2^{16}$) and $n$ a prime. Such finite fields allow for an efficient inversion algorithm due to Itoh and Tsujii, which we can leverage to make computations on an ordinary curve (short Weierstraß equation) in affine coordinates. We describe a very efficient variant of Montgomery reduction for computations modulo $p$, and...
In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The...
We study the problem of delegating computations via interactive proofs that can be probabilistically checked. Known as *interactive oracle proofs* (IOPs), these proofs extend probabilistically checkable proofs (PCPs) to multi-round protocols, and have received much attention due to their application to constructing cryptographic proofs (such as succinct non-interactive arguments). We prove that a rich class of NEXP-complete problems, which includes machine computations over large fields and...
We revisit the matrix model for non-interference (NI) probing security of masking gadgets introduced by Belaïd et al. at CRYPTO 2017. This leads to two main results. 1) We generalise the theorems on which this model is based, so as to be able to apply them to masking schemes over any finite field --- in particular GF(2)--- and to be able to analyse the strong non-interference (SNI) security notion. We also follow Faust et al. (TCHES 2018) to additionally consider a robust probing model that...
We present a methodology to construct preprocessing zkSNARKs where the structured reference string (SRS) is universal and updatable. This exploits a novel use of *holography* [Babai et al., STOC 1991], where fast verification is achieved provided the statement being checked is given in encoded form. We use our methodology to obtain a preprocessing zkSNARK where the SRS has linear size and arguments have constant size. Our construction improves on Sonic [Maller et al., CCS 2019], the prior...
In Bitcoin-like systems, when a payee chooses to accept zero-confirmation transactions, it needs to verify the validity of the transaction. In particular, one of the steps is to verify that each referred output of the transaction is not previously spent. The conventional lightweight client design can only support such operation in the complexity of O($N_T$), where $N_T$ is the total number of transactions in the system. This is impractical for lightweight clients. The latest proposals...
We present EverCrypt: a comprehensive collection of verified, high-performance cryptographic functionalities available via a carefully designed API. The API provably supports agility (choosing between multiple algorithms for the same functionality) and multiplexing (choosing between multiple implementations of the same algorithm). Through abstraction and zero-cost generic programming, we show how agility can simplify verification without sacrificing performance, and we demonstrate how C...
Permissioned Blockchain has become quite popular with enterprises forming consortium since it prioritizes trust over privacy. One of the popular platforms for distributed ledger solution, Hyperledger Fabric, requires a transaction to be endorsed or approved by a group of special members known as endorsers before undergoing validation. To endorse a transaction, an endorser mentions its identity along with the signature so that it can be verified later. However, for certain transactions,...
Cryptographic anonymous credential schemes allow users to prove their personal attributes, such as age, nationality, or the validity of a ticket or a pre-paid pass, while preserving their privacy, as such proofs are unlinkable and attributes can be selectively disclosed. Recently, Chase et al. (CCS 2014) observe that in such systems, a typical setup is that the credential issuer also serves as the verifier. They introduce keyed-verification credentials that are tailored to this setting. In...
Message authentication code, MAC for short, is a symmetric-key cryptographic function for authenticity. A standard MAC verification only tells whether the message is valid or invalid, and thus we can not identify which part is corrupted in case of invalid message. In this paper we study a class of MAC functions that enables to identify the part of corruption, which we call group testing MAC (GTM). This can be seen as an application of a classical (non-adaptive) combinatorial group testing to...
In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. In this context, the recently introduced function-dependent commitments (FDCs) are the only approach providing both fast correctness verification, information-theoretic input-output privacy, and strong unforgeability. Homomorphic authenticators--- the established approach to this problem ---do not provide information-theoretic privacy and always reveal the...
NTRU lattices are a class of polynomial rings which allow for compact and efficient representations of the lattice basis, thereby offering very good performance characteristics for the asymmetric algorithms that use them. Signature algorithms based on NTRU lattices have fast signature generation and verification, and relatively small signatures, public keys and private keys. A few lattice-based cryptographic schemes entail, generally during the key generation, solving the NTRU...
We introduce a simple, yet efficient digital signature scheme which offers post-quantum security promise. Our scheme, named $\texttt{TACHYON}$, is based on a novel approach for extending one-time hash-based signatures to (polynomially bounded) many-time signatures, using the additively homomorphic properties of generalized compact knapsack functions. Our design permits $\texttt{TACHYON}$ to achieve several key properties. First, its signing and verification algorithms are the fastest...
We construct a concretely practical proof-of-space (PoS) with arbitrarily tight security based on stacked depth robust graphs and constant-degree expander graphs. A proof-of-space (PoS) is an interactive proof system where a prover demonstrates that it is persistently using space to store information. A PoS is arbitrarily tight if the honest prover uses exactly N space and for any $\epsilon > 0$ the construction can be tuned such that no adversary can pass verification using less than...
In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. Existing solutions do not simultaneously provide fast correctness verification, strong security properties, and information-theoretic confidentiality. We introduce a novel approach, in the form of function-dependent commitments, that combines these strengths. We also provide an instantiation of function-dependent commitments for linear functions that is...
Hash-based signature schemes are the most promising cryptosystem candidates in a post-quantum world, but offer little structure to enable more sophisticated constructions such as group signatures. Group signatures allow a group member to anonymously sign messages on behalf of the whole group (as needed for anonymous remote attestation). In this work, we introduce G-Merkle, the first (stateful) hash-based group signature scheme. Our proposal relies on minimal assumptions, namely the existence...
Human dignity demands that personal information, like medical and forensic data, be hidden from the public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit by parties entrusted with Data, unjustly harming citizens and eroding trust in central institutions. Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to the tension between the ideals of personal privacy and institutional integrity, enforcing the latter in a way...
Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for...
Server-Aided Verification (SAV) is a method that can be employed to speed up the process of verifying signatures by letting the verifier outsource part of its computation load to a third party. Achieving fast and reliable verification under the presence of an untrusted server is an attractive goal in cloud computing and internet of things scenarios. In this paper, we describe a simple framework for SAV where the interaction between a verifier and an untrusted server happens via a...
Assuming the existence of a public-key infrastructure (PKI), digital signatures are a fundamental building block in the design of secure consensus protocols with optimal resilience. More recently, with the advent of blockchain protocols like Bitcoin, consensus has been considered in the ``permissionless'' setting where no authentication or even point-to-point communication is available. Yet, despite some positive preliminary results, there has been no attempt to formalize a building block...
HACL* is a verified portable C cryptographic library that implements modern cryptographic primitives such as the ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC message authentication, SHA-256 and SHA-512 hash functions, the Curve25519 elliptic curve, and Ed25519 signatures. HACL* is written in the F* programming language and then compiled to readable C code. The F* source code for each crypto- graphic primitive is verified for memory safety, mitigations against timing...
qDSA is a high-speed, high-security signature scheme that facilitates implementations with a very small memory footprint, a crucial requirement for embedded systems and IoT devices, and that uses the same public keys as modern Diffie--Hellman schemes based on Montgomery curves (such as Curve25519) or Kummer surfaces. qDSA resembles an adaptation of EdDSA to the world of Kummer varieties, which are quotients of algebraic groups by \(\pm1\). Interestingly, qDSA does not require any full group...
Key enumeration solutions are post-processing schemes for the output sequences of side channel distinguishers, the application of which are prevented by very large key candidate space and computation power requirements. The attacker may spend several days or months to enumerate a huge key space (e.g. $2^{40}$). In this paper, we aim at pre-processing and reducing the key candidate space by deleting impossible key candidates before enumeration. A new distinguisher named Group Collision Attack...
Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry proposed a new primitive called universal samplers that allows oblivious sampling from arbitrary distributions, and showed how to construct universal samplers using indistinguishability obfuscation (iO) in the ROM. One important limitation for applying universal samplers in practice is that the constructions are built upon indistinguishability obfuscation. The costs of using current iO constructions is prohibitively large. We ask...
The "blockchain" distributed ledger pioneered by Bitcoin is effective at preventing double-spending, but inherently attracts (1) "user cartels" and (2) incompressible delays, as a result of linear verification and a winner-takes-all incentive lottery. We propose to forgo the blocks and chain entirely, and build a truly distributed ledger system based on a lean graph of cross-verifying transactions, which now become the main and only objects in the system. A fully distributed consensus...
Block-cipher-based authenticated encryption has obtained considerable attention from the ongoing CAESAR competition. While the focus of CAESAR resides primarily on nonce-based authenticated encryption, Deterministic Authenticated Encryption (DAE) is used in domains such as key wrap, where the available message entropy motivates to omit the overhead for nonces. Since the highest possible security is desirable when protecting keys, beyond-birthday-bound (BBB) security is a valuable goal for...
We present an actively secure multi-party computation the of the Advanced Encryption Standard (AES). To the best of our knowledge it is the fastest of its kind to date. We start from an efficient actively secure evaluation of general binary circuits that was implemented by the authors of [DLT14]. They presented an optimized implementation of the so-called MiniMac protocol [DZ13] that runs in the pre-processing model, and applied this to a binary AES circuit. In this paper we describe how to...
Proof-of-work is a central concept in modern cryptocurrencies and denial-of-service protection tools, but the requirement for fast verification so far made it an easy prey for GPU-, ASIC-, and botnet-equipped users. The attempts to rely on memory-intensive computations in order to remedy the disparity between architectures have resulted in slow or broken schemes. In this paper we solve this open problem and show how to construct an asymmetric proof-of-work (PoW) based on a computationally...
Verifiable computation allows a client to outsource computations to a worker with a cryptographic proof of correctness of the result that can be verified faster than performing the computation. Recently, the Pinocchio system achieved faster verification than computation in practice for the first time. Unfortunately, Pinocchio and other efficient verifiable computation systems require the client to disclose the inputs to the worker, which is undesirable for sensitive inputs. To solve this...