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Abstract—We design DiStefano: an efficient, maliciously-
secure framework for generating private commitments over
TLS-encrypted web traffic, for verification by a designated
third-party. DiStefano provides many improvements over
previous TLS commitment systems, including: a modular
protocol specific to TLS 1.3, support for arbitrary verifiable
claims over encrypted data, client browsing history privacy
amongst pre-approved TLS servers, and various optimisations
to ensure fast online performance of the TLS 1.3 session. We
build a permissive open-source implementation of DiStefano
integrated into the BoringSSL cryptographic library (used by
Chromium-based Internet browsers). We show that DiStefano
is practical in both LAN and WAN settings for committing to
facts in arbitrary TLS traffic, requiring < 1 s and ≤ 80KiB

to execute the complete online phase of the protocol.

1. Introduction

The Transport-Layer Security (TLS) protocol [1] pro-
vides encrypted and authenticated channels between clients
and servers on the Internet. Such channels commonly trans-
mit trusted information about users behind clients such as
proofs of age [2], social security statuses [3], and accepted
purchase information. While various applications would
benefit from learning such data points, doing so represents
an obvious privacy concern [4, 5, 6, 7, 8, 9]. Exporting such
information as anonymous credentials is non-trivial since
the information resides in an encrypted and authenticated
channel. Meanwhile, both legislation (such as GDPR [10])
and standards bodies (such as W3C [11]) have made usage
of privacy-preserving data credentials a priority.

Designated-Commitment TLS (DCTLS) protocols (also
known as three-party handshake protocols) provide modified
TLS handshakes that allow exporting certain claims on
the TLS channel to a designated verifier. The protocols
perform handshakes that secret-share private session data
amongst a client and a verifier, and compute the hand-
shake and record-layer phases in two-party computation
(2PC). Examples of DCTLS protocols include DECO [2],

TLSNotary/PageSigner [12]1, TownCrier [13], Garble-then-
Prove [14], and Janus [15]. Similar techniques are also used
to produce zero-knowledge middleboxes [16] (for proving
that client traffic adheres to corporate browsing policies, for
example), and for devising multi-party TLS clients/servers.
Prominent examples of the latter are Oblivious TLS [17]
and MPCAuth [18].

Unfortunately, while previous works claim practicality,
all such DCTLS protocols appear insufficient for wide-scale
usage. First, no protocol explicitly provides secure support
for TLS 1.3. Support for TLS 1.3 surpassed that of 1.2
around December 2020 [19] and, according to Cloudflare
Radar [20], TLS 1.3 now accounts for 63% of secure
network traffic as opposed to 8.7% for TLS 1.2, so it is
imperative that protocols support this version. When DCTLS
protocols do support TLS 1.3, the security analysis is lack-
ing and/or efficiency concerns that surround implementing
TLS 1.3 ciphersuites and protocol steps in (maliciously-
secure) 2PC are overlooked. Existing security arguments
also lack in agility, meaning that they only apply for a static
protocol, ciphersuite and 2PC primitives. This is a critical
concern: primitives used by DECO have been already shown
to be insecure [21, 22]. Client privacy is also neglected
as the protocols reveal the server that clients communicate
with to the verifier, revealing their browsing history. Second,
from a deployability perspective, no fully-featured open-
source implementation of a DCTLS protocol exists that
achieves strong security guarantees, or much less one that
interoperates with Internet browsing tools.

Our work. We design DiStefano (Fig. 1), a DCTLS
protocol that securely generates private commitments over
TLS 1.3 data. Security is proven using a novel standalone
model that permits cryptographic agility by allowing to
swap various schemes depending on the desired cipher-
suite. DiStefano is provided as a permissive open-source
implementation2 integrated into the widely-used BoringSSL

1. We refer exclusively here to original PageSigner as TLSNotary does
not appear to have a fixed cryptographic design.

2. https://github.com/brave-experiments/DiStefano

https://github.com/brave-experiments/DiStefano


Figure 1. An overview of the DiStefano protocol. In the handshake and query phases, the client performs the TLS 1.3 handshake and record-layer phases
in conjunction with the verifier using 2PC to secret-share traffic keys and other session data for establishing a secure session with the server (secret-shared
keys are represented with a square over the key). In the commitment phase, the client authenticates the server to the verifier using a zero-knowledge
proof of valid TLS signatures (denoted by ZKPVS, see Section B.3), and commits to some encrypted session data, before receiving the verifier’s secret
TLS session shares.

library,3 where 2PC functionality is provided by emp [23].
With respect to the client’s privacy, DiStefano supports
zero-knowledge authentication amongst N verifier-approved
TLS servers by using a zero-knowledge proof of valid
signatures. Finally, the commitments generated by DiSte-
fano can be used to produce any type of verifiable private
claim, either non-interactively using zero-knowledge proofs
or interactively using 2PC. Note that, in this work, we value
the building of a modular framework for solving the core
commitment functionality, and leave the implementation of
the subsequent proving stage up to the implementer, as this
can differ significantly depending on the application (see
Section 4.4). To ensure high performance, a number of opti-
misations were made to the cryptographic functionality and
software implementation of DiStefano. We show that the
online portions of the handshake and record-layer phases can
be executed in 500ms and ∼ 750ms in a LAN setting, and
with 5KiB and around 4KiB of bandwidth, respectively, for
2KiB of TLS communication. In a WAN setting, there are
modest increases in timing that are largely explained by the
increase in latency. All in all, the online costs of DiStefano
fall way under a second, which is far below standard TLS
handshake timeout times of 10-20 seconds [24].

Formal contributions. Our formal contributions are:

• A private Designated-Commitment TLS 1.3 (DCTLS)
protocol, DiStefano (Section 4), with a modular, stan-
dalone security framework that guarantees security in
the presence of malicious adversaries (Section 6).

• Novel optimisations that allow running secure 2PC
TLS 1.3 clients with higher efficiency (Section 5).

• An open-source, Chromium-compliant implementation
integrated into BoringSSL.

• Experimental analysis showing that DiStefano is prac-
tical (in LAN/WAN settings) for committing to various
sizes of Internet traffic (Section 7).

3. This library is used by most Chromium-based Internet browsers, that
make up a dominant share of all browser usage.

2. Background

2.1. General Notation

Vectors are denoted by lower-case bold letters. We use
len(s) to denote the length of s ∈ {0, 1}∗. The symbol [m]
indicates the set {1, 2, . . . ,m}. We write a← b to assign the
value of b to a, and a←$ S to assign a uniformly sampled
element from the set S. λ denotes the security parameter.

We denote a finite field of characteristic q as Fq and
the m-dimensional vector space over Fq as Fqm . We are
primarily concerned with the smallest field, F2, where the
additive operation on a, b ∈ F2 is simply an exclusive-
or operation, a ⊕ b, with multiplication corresponding to
the AND operation. We extend this notation to refer to
operations on m-dimensional vectors a,b ∈ F2m , writing
a ⊕ b and a · b to refer to addition and multiplication,
respectively. Note that while addition in F2m is simply
m XOR operations, multiplication over F2m requires extra
logic compared to multiplications over F2. We write elliptic
curves with a generator G over Fq as EC(Fq).

For a security game Game used by a cryptographic
scheme ∆, we denote the advantage of an algorithm A in
∆ by Advgame

A,∆ (λ), where:

Advgame
A,∆ (λ) = Pr[A succeeds]− Pr[A fails]. (1)

We say that ∆ is secure with respect to Game, iff
Advgame

A,∆ (λ) ≤ negl(λ), for some negligible function negl(λ)
and security parameter λ. In the following, we will use cer-
tain acronyms: we provide a glossary of them in Section K.

2.2. Background on DCTLS Protocols

Designated-Commitment (DCTLS) TLS protocols allow
a client (C) to generate commitments to TLS session data
communicated with a server (S) that can be sent to a
designated third-party verifier (V). They consist of the fol-
lowing phases (which are described in Section C): a (V-
assisted) handshake phase, a (V-assisted) query execution
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phase, and a commitment phase. Previous work, such as in
DECO and tools like PageSigner, provide explicit attestation
functionality for proving facts about the committed TLS
session (using zero-knowledge proofs). Note that, without
such commitments, proving statements that use TLS data as
sources of truth must assume either a trustworthy client, or
C must allow V to read their TLS traffic in the clear.
DCTLS over TLS 1.3. Previous DCTLS protocols focused
on TLS 1.2, with an informal (and mostly incomplete) ex-
tension to TLS 1.3. Recall that TLS 1.3 emerged in response
to dissatisfaction with the outdated design of the TLS 1.2
handshake, its two-round-trip overhead, and the increasing
number of practical attacks [25, 26, 27, 28]. The necessary
changes introduced by TLS 1.3 to improve performance and
deployability are significant stumbling blocks for applying
previous DCTLS protocols directly. Thus, in this work,
we focus on TLS 1.3, and highlight explicit changes to
DCTLS protocols that are required for handling the sub-
stantial protocol-level differences. We provide an overview
of the standard TLS 1.3 handshake, and its standard notation
defined in [29], in Section A.
Description of DCTLS phases. In Fig. 1, we summarise the
stages of DCTLS for establishing commitments to TLS 1.3
encrypted traffic between C and S to be sent to a designated
V . In the following, we describe how the different stages
of the protocol function in relation to the various stages
of the TLS 1.3 protocol [1]. The following is an informal
description of TLS 1.3 (1-RTT with certificate-based authen-
tication) when extended to support DCTLS-like protocols.
Handshake phase. In this phase, S learns the same secret
session parameters as in standard TLS 1.3, while C and V
learn shares of the session parameters that only C would
normally learn. This requires C and V to engage in the core
TLS 1.3 protocol using a series of 2PC functionalities.

We focus on the default mode for establishing a secure
TLS 1.3 session using (EC)DH ciphersuites, and certificate-
based authentication between C and S. In this mode, the
handshake starts with C sending a ClientHello (CH) mes-
sage to S. This message advertises the supported (EC)DH
groups and the ephemeral (EC)DH keyshares specified in
the supported_groups and key_shares extensions,
respectively. The CH message also advertises the signa-
ture algorithms supported. It also contains a nonce and a
list of supported symmetric-key algorithms (ciphersuites).
Note that for DCTLS protocols, the ephemeral keyshares
Z ∈ EC(Fc) are generated as a combination of additive
shares (zX ←$ Fc, ZX = zX · G) for X ∈ {C,V}, where
Z = ZC + ZV ∈ EC(Fc).
S processes the CH message and chooses cryptographic

parameters for the session. If (EC)DH key exchange is
used, S sends a ServerHello (SH) message containing
a key_share extension with their (EC)DH key, corre-
sponding to one of the key_shares advertised by C.
The SH message also contains a S-generated nonce and the
ciphersuite chosen. An ephemeral shared secret is computed
at both ends, which requires C and V to engage in 2PC com-
putation. Afterwards, all subsequent handshake messages are

encrypted using keys derived from this secret. Once this
derivation is performed, V’s keys can be revealed to C to
perform local encryption/decryption of handshake messages,
as these keys are considered independent from the eventual
session secret derived at the end of the handshake [29].

The server S then sends a certificate chain (in the
ServerCertificate message -SCRT-), and a message that
contains a proof that they posses the private key corre-
sponding to the public key advertised in the leaf certificate.
This proof is a signature over the handshake transcript
and it is sent in the ServerCertificateVerify (SCV)
message. S also sends the ServerFinished (SF) message
that provides integrity of the handshake up to this point.
It contains a message authentication code (MAC) over the
entire transcript, providing key confirmation and binding S’s
identity to any computed keys. Optionally, S can send a
CertificateRequest (CR) message, prior the SCRT mes-
sage, requesting a certificate from C.

At this point, S can immediately send application
data to the unauthenticated C. Upon receiving S’s mes-
sages, C verifies the signature of the SCV message and
the MAC of SF. If requested, C responds with their
own authentication messages, ClientCertificate and
ClientCertificateVerify, to achieve mutual authenti-
cation. Finally, C must confirm their view of the handshake
by sending a MAC over the handshake transcript in the
ClientFinished (CF) message. The MAC generation must
also be computed in 2PC.

Now, the handshake is completed, and C and S can
derive the key material required by the subsequent record
layer to exchange authenticated and encrypted application
data. This derivation is performed in 2PC, and C and V
both hold shares of all the secret parameters needed to
encrypt traffic using the specified encryption ciphersuite. In
this work, we specifically target AES-GCM, since over 90%
of TLS 1.3 traffic uses this ciphersuite [30].
Record Layer (Query Execution) phase. C sends a query q
(in encrypted form q̂) to S with help from V . Specifically,
since the session keys are secret-shared, C and V jointly
compute the encryptions of these queries in 2PC. Encrypted
responses, r̂, can then be decrypted using a similar procedure
to reveal S’s response r to C. This is important for running
tools in a browser, or any multi-round protocol, where
subsequent queries depend on previous responses.
Commitment phase. After querying S and receiving a
response r, C commits to the session by forwarding the
ciphertexts to V , and receives V’s session key shares in
exchange. Hence, C can verify the integrity of r, and later
prove statements about it. The fact that C sends commit-
ments before they receive V’s shares means that V can trust
subsequent attestations over the commitments.
Limitations of approaches. Existing DCTLS schemes have
serious security, performance, and deployability limitations.
They either only work with old/deprecated TLS versions
(1.2 and under) and offer no privacy from the oracle (Page-
Signer [31]), or rely on trusted hardware (Town Crier [13])
against which various attacks exist [32]. Another class of or-
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acle schemes assumes cooperation from S by installing TLS
extensions [33], or by changing application-layer logic [34].
These approaches suffer from two fundamental problems:
they break legacy compatibility, causing a significant barrier
to wide adoption; and only provide conditional exportability
as S has the sole discretion to determine which data can be
exported, and can censor export attempts. While DECO [2]
promises to solve these problems, its non-modular secu-
rity design, combining all of the individual phases of the
protocol, makes it impossible to swap individual pieces of
functionality (without rewriting the entire security proof).
These limitations have the following repercussions.
Security. Some primitives used by DECO have since been
shown to be insecure [21, 22], and the security proof only
targets TLS 1.2. General guidance is offered for handling
TLS 1.3, but is not formally specified. More worryingly,
the security argument is all-encompassing, proving security
for a combined session involving the TLS handshake, sub-
sequent record protocol, and the zero-knowledge attestation
layer (this is common in other constructions too [18, 13]).
This significantly harms cryptographic agility, since any
change to the utilised primitives, protocol, or ciphersuites
theoretically dictates that an entirely new proof be written.
Lack of cryptographic agility is a significant source of
cryptographic vulnerabilities in real-world systems [35].
Privacy. Explicit authentication of S to V during the
handshake is mandated due to the non-modular security
proof, which is harmful for C’s browsing privacy. This is
somewhat necessitated by TLS 1.2’s handshake flow, where
the identity of S is sent in the clear in the first message they
sent. By contrast, TLS 1.3 rearranges the handshake flow
slightly, and the certificate is only exchanged in an encrypted
form on later messages. Because of this, DiStefano achieves
modular privacy properties and retains the privacy of C (we
never disclose the identity S to V , as this will reveal the
client’s browsing history, for example).
Performance. Certain underlying cryptographic tools (such
as oblivious transfer protocols) have seen remarkable im-
provements following DECO’s publication [36, 37]. How-
ever, certain parts of the transformations needed to handle
the AES-GCM ciphersuite detailed by DECO are underspec-
ified, and naively lead to high costs during 2PC execution.
Deployability. Recent DCTLS protocols [38, 15, 14, 39]
are either aimed entirely at TLS 1.2 [14], are entirely theo-
retical [38], or use semi-honest 2PC to achieve reasonable
performance [15, 39]. We note that the use of semi-honest
2PC must be applied carefully to guarantee overall malicious
security of the protocol, and (to the best of our knowledge)
no TLS 1.3 attestation mechanism has yet been proposed
that completely satisfies this. In fact we discuss in Section I
that using semi-honest 2PC primitives may lead to potential
attacks. Moreover, even when semi-honest 2PC is used,
performance is lacking and public implementations are rare.
One recent example is the recently proposed Janus proto-
col [15], which is accompanied by a reference implemen-
tation, but without integration into existing TLS libraries.
Janus achieves a reported handshake time of around 0.51 s

in a LAN setting with around 113KiB of handshake traffic.
By contrast, DiStefano achieves malicious security guar-
antees, with around 0.1ms of online time, and exchanging
much less data: around 28KiB for the online phase of the
handshake. Thus, we conclude that using malicious 2PC is
not a bottleneck for current protocols.

2.3. Overview of DiStefano

Due to the limitations of the previous DCTLS protocols,
we aim to build a protocol that works for TLS 1.3, improves
privacy guarantees for C, does not require specific hardware
or extensions, and can be easily integrated into common
applications. Overall, DiStefano achieves the following.
• The creation of a maliciously-secure framework that

generates binding and hiding commitments over data
communicated during TLS 1.3 sessions.

• Cryptographic optimisations that ensure practical run-
ning costs, and experimental analysis showing that
DiStefano is ready for real workflows.

• A publicly-available implementation integrated into the
TLS library that browsers use, with no need for spe-
cialized hardware or installing extra extensions.

We believe that DiStefano is an essential step-forward for
showing that DCTLS can be implemented in practice.
Overview of required optimisations. Our implementation
of DiStefano requires several optimisations to achieve its
performance. We reduce the number of rounds required to
derive AES-GCM secret shares (cf. Section 5) by a factor of
around 500 compared to prior art (PageSigner), and reduce
the required bandwidth by around a factor of 3. Moreover,
we carefully combine multiple sub-circuits used in the TLS
handshake to reduce the number of re-computed secrets and
circuit invocations (cf. Section 4.1). We emphasise that a
significant portion of our engineering effort was dedicated
to fine-tuning at a low level, and we view this as a valuable
contribution in its own regard: we aspire that this facilitates
seamless adaptation of our code by future researchers.

3. Secure Multi-Party Computation

Two-party secure computation (2PC) protocols allow
parties p1 and p2 to jointly compute generic functions
f(s1, s2) over their private inputs s1 and s2. The secu-
rity of the protocols ensures that nothing of each input
is revealed to the other party, except for what f naturally
reveals [40]. There are two common approaches for 2PC
protocols. Garbled circuits protocols[41, 42] encode f as a
boolean circuit and evaluate an encrypted variant of the cir-
cuit across two parties. Threshold secret-sharing protocols
(e.g. SPDZ [43, 44], or MASCOT [45]), typically operate
by first producing some random multiplicative triples (re-
ferred to as Beaver triples[46]) before additively sharing
secret inputs with some extra information. Garbled circuit
protocols are particularly well-suited to secure evaluation
of binary circuits, such as AES or SHA-256. The cost of a
garbled circuit is normally evaluated in terms of the number
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Figure 2. The DiStefano 1-RTT handshake protocol. Shorthands correspond to those defined in [29]. Purple represents messages sent or calculated by V ,
orange by the client, pink by the server, and black for 2PC calculations between the client and verifier. Messages with an asterisk (*) are optional, and
those within braces ({}) are encrypted.

Verifier Client Server
static (Sig): pkS , skS

ClientHello:ClientHello: ServerHello:
xc←$ Zq, Xc ← gxczv←$ Zq, Zv ← gzv ys←$ Zq

+ClientKeyShare: SSK← Zv +Xc +ClientKeyShare: SSK← Zv +Xc +ServerKeyShare: Ys←$ gys

Forward SKS to Verifier
sskc ← Y xc

s , tc ← ECtF(sskc)sskv ← Y zv
s , tv ← ECtF(sskv)

DHE← SSKys

HSv ⊕HSc ← HKDF .Extract(∅, tv + tc) HS← HKDF .Extract(∅,DHE)

CHTSv ⊕ CHTSc ← HKDF .Expand(HSv ⊕HSc,Label1 ∥H0) CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTSv ⊕ SHTSc ← HKDF .Expand(HSv ⊕HSc,Label2 ∥H0) SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHSv ⊕ dHSc ← HKDF .Expand(HSv ⊕HSc,Label3 ∥H1) dHS← HKDF .Expand(HS,Label3 ∥H1)

tkvchs ⊕ tkcchs ← DeriveTK(CHTSv ⊕ CHTSc) tkchs ← DeriveTK(CHTS)

tkvshs ⊕ tkcshs ← DeriveTK(SHTSv ⊕ SHTSc) tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*

{+ServerCertificate }: pkS
{+ServerCertificateVerify }: SigS ← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTSv ⊕ SHTSc,Label4 ∥Hϵ) fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished } : SF ← HMAC(fkS ,H4)

Forward encrypted {EE},. . .,{SF} to Verifier
Reveal SHTSv to Client

Derive tkchsusing SHTSv

abort if Verify(pkS ,Label7 ∥H3,SigS) ̸= 1

abort if SF ̸= HMAC(fkS ,H4)

Forward SF, σ ← Π.Prove(R,SigS ,Label7 ∥H3) to Verifier
Reveal fkS to Verifier
Forward H4, H3 and H2 to Verifier

abort if SF ̸= HMAC(fkS ,H4) or 0← Π.Verify(R, σ,Label7 ∥H3)

MSv ⊕MSc ← HKDF .Extract(dHSv ⊕ dHSc,∅) MS← HKDF .Extract(dHS, 0)
CATSv ⊕ CATSc ← HKDF .Expand(MSv ⊕MSc,Label5 ∥H2) CATS← HKDF .Expand(MS,Label5 ∥H2)

SATSv ⊕ SATSc ← HKDF .Expand(MSv ⊕MSc,Label6 ∥H2) SATS← HKDF .Expand(MS,Label6 ∥H2)
tkvcapp ⊕ tkccapp ← DeriveTK(CATSv ⊕ CATSc) tkcapp ← DeriveTK(CATS)
tkvsapp ⊕ tkcsapp ← DeriveTK(SATSv ⊕ SATSc) tksapp ← DeriveTK(SATS)

{+ClientCertificate }*: pkC
{+ClientCertificateVerify:}*: SigC ← Sign(skC ,Label8 ∥H5))

Reveal CHTSv to Client
fkC ← HKDF .Expand(CHTSv ⊕ CHTSc,Label4 ∥Hϵ)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF← HMAC(fkC ,H6)

abort if Verify(pkc,Label8 ∥ ∥H5,SigC) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

of AND gates due to the Free-XOR optimisation [47]. In
contrast, threshold secret-sharing schemes are typically well-
suited for computing arithmetic operations, such as modular
exponentiation. We calculate their cost in terms of their

number of rounds and bandwidth requirements.
MPC primitives. We use both types of 2PC protocols:
maliciously-secure authenticated garbling implementation
provided by emp [48] for binary operations, and we base
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2PC arithmetic operations on oblivious transfer (OT).

Definition 1 (Oblivious Transfer (OT)). An oblivious trans-
fer scheme, OT, consists of the following algorithms:

• OT.Gen(1λ): outputs any key material.
• OT.Exec(m0,m1, b): The sender P1 inputs messages
m0 and m1, and the receiver P2 inputs a bit b ∈ {0, 1}.
The receiver P2 learns mb, while P1 learns nothing.

We realise the OT functionality via the actively secure
IKNP [49, 50] extension and the Ferret [36] OT scheme.
Both rely on the security of information theoretic MACs,
the learning parity with noise (LPN) assumption, and on
randomness assumptions about hash functions, see [51].

Using OT as a building block, we realise the remaining
2PC functionality needed by using multiplicative-to-additive
(MtA) secret sharing schemes.

Definition 2 (MtA). An MtA scheme, MtA, consists of the
following algorithms:

• MtA.Gen(1λ): outputs any needed key material.
• MtA.Mul(α, β): each Pi supplies ai, learning as output
bi, such that

∑
bi = Πiai.

For malicious security, we expand this definition with an
additional algorithm, MtA.Check(a1, . . . , b1, . . .), to check
share consistency. Existing works [2, 12, 15] realise MtA
with an approach [52] based on Paillier encryption [53]. We
deviate from this approach to improve efficiency [54, §5],
and to mitigate the need for range proofs [22, 21] (necessary
for achieving malicious security). We realise the MtA func-
tionality using the schemes introduced in [55] and [56, 57]
for rings of characteristic > 2 and 2, respectively. The
schemes require OT functionality and are instantiated with
128-bit statistical and computational security. We note that
whilst the security of [56, 57] reduces directly to an NP-
hard encoding problem [58], to the best of our knowledge,
there is no computational hardness proof for [55].

ECtF. During the Key Exchange phase of the handshake
of DCTLS, both V and C hold additive shares Zv and Zc

of a shared ECDH key (x, y) = DHE. Given that all key
derivation operations are carried out on the x co-ordinate of
Z, we use the elliptic curve to field (ECtF) functionality [2]
to produce additive shares tv and tc of the x coordinate,
which is an element in Fq. Using these shares as inputs
to the subsequent 2PC operations to derive the handshake
secrets allows running all computation in a binary circuit,
which results in a substantial performance improvement
compared with attempting to combine arithmetic and binary
approaches in a garbled circuit. We stress that use of the
ECtF functionality improves performance: we estimate that
computing just the x co-ordinate of Zv + Zc in a garbled
circuit would be more expensive than deriving all TLS
session secrets, requiring around 1.7M AND gates for an
elliptic curve over a field with a 256-bit prime. From a
security perspective, we remark that the security of the ECtF
functionality reduces to the security of the underlying secure
multiplication protocol. We achieve malicious security by

instantiating the multiplication with a maliciously-secure
MtA scheme.

4. DiStefano Protocol

In this section, we fully describe each of the phases
of the DiStefano protocol (formal ideal functionalities are
given in Section C). A diagram of the full protocol is found
in Fig. 2, and, for comparison, we provide a diagram of
TLS 1.3 and a summary of the shorthands used (from [29])
in Section A. The security analysis is found in Section 6
and Section E.

4.1. Handshake Phase: HSP

We use the similar overarching mechanism for the
handshake phase as described in Section 2.2, but focused
exclusively on TLS 1.3 with AES-GCM as the AEAD
scheme (Section B.2), using ECDH for the shared key
generation, and using ECDSA certificates. The 2PC ideal
functionalities that we use are defined in Algorithms 3 to 5
(Section E.1). The protocol can be adapted to work with any
other TLS 1.3-compliant ciphersuites that are compatible
with 2PC.

At a high-level, we adapt the TLS 1.3 handshake by
treating C and V as a single TLS client from the perspec-
tive of S. For this, we reverse the “traditional” flow of
the TLS 1.3 handshake by having C and V each prepare
an additively shared ephemeral key share SSK, as seen
in Fig. 2. This can be computed without 2PC.
C then sends the CH and the CKS messages, advertis-

ing SSK as part of the key_shares extension. S then
processes these messages and, in turn, sends a SH message
back to C containing a freshly sampled ECDH key_share
Zs. At this stage, S computes the shared ECDH key as
DHE = xs ·SSK and continues to derive all traffic secrets
(i.e. CHTS,SHTS, tkshs, tkchs). Once C and V receive the
SH message, they derive additive shares of the shared ECDH
key as E = xc · Ys + xv · Ys. As TLS 1.3 key derivation
operates on the x coordinate of the shared key, C and V
convert their additive shares of E = (Ex, Ey) into additive
shares Ex = tc+tv by running the ECtF functionality. With
Ex computed, C and V proceed to run the handshake key
derivation circuit in 2PC, with each party learning shares
HSv ⊕ HSc = HKDF .Extract(∅, tv + tc). In practice, this
process is carried out inside a garbled circuit that produces
shares of CHTS,SHTS and dHS, as well as the SF message
key fkS . This key is provided to both C and V . This circuit
comprises of around 800K AND gates, which is similar to
DECO’s circuit size for TLS 1.2. We delay the derivation
of the traffic keys as it provides authenticity guarantees to
V .
Authentication phase. S sends the CR (if wanted), SCRT,
SCV and SF messages. The SF message is computed by first
deriving a finished key fkS from SHTS and then computing
a MAC tag over a hash of all the previous handshake
messages. At this point, S is able to compute the client
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application traffic secret, CATS, and the server application
traffic secret, SATS. S can also start sending encrypted
application data (under tksapp) while waiting for the final
flight of C messages.
C receives the encrypted messages from S and, in turn,

forwards them (encrypted) to V alongside a commitment to
their share of CHTS/SHTS. This commitment is necessary
to make AES-GCM act as a committing cipher from the
perspective of V , which allows V to disclose their shares of
CHTS and SHTS to C without compromising authenticity
guarantees. As C now knows the entirety of CHTS and
SHTS, they are able to locally derive the handshake keys
tkchs and tkshs, allowing them to check S’s certificate and
SF messages without the involvement of V . Moreover, as
C now knows tkchs they are also able to respond to the
CR if one exists. C then forwards an authentic copy of the
hashes H2, H3, and H4 to V , allowing them to check the
SF message as is done in TLS 1.3. Notice that C does not
forward the decrypted SCRT message to V , as this message
reveals the identity of S. Let R be a set of TLS certificates,
corresponding to a set of pre-approved TLS servers (Ss). At
this point, C can (optionally) send to V a zero-knowledge
proof (σ ← Π.Prove(R,Sig,Label7 ∥ H3)) of a valid TLS
signature (ZKPVS), Sig, as long as S ∈ R4. V can then
check the validity of the produced ZKPVS proof (if present)
by checking that 1 ← Π.Verify(R, σ,Label7 ∥ H3).5 Simi-
larly, C can selectively reveal the blocks containing the SF
message, allowing V to validate the SF (note that fkS was
computed in 2PC, but it is revealed after the commitment).
Finally, C and V derive the shares of the traffic secrets
MS,CATS,SATS and the traffic keys tksapp, tkcapp in 2PC.
In practice, we instantiate this derivation as a garbled circuit
that contains around 700K AND gates. Note that this circuit
cannot cheaply be combined with the handshake secret
derivation circuit, as deriving the traffic keys requires a hash
of the unencrypted handshake transcript. This would require
decrypting and hashing large messages inside a garbled
circuit, which is expensive.

4.2. Query Execution Phase: QP

Once HSP has completed, C and V move into the query
phase (Fig. 3). For simplicity, we describe this portion of
the protocol in terms of a single round of queries, before
extending the phase to multiple rounds.

During the query phase of the protocol, C produces a
series of queries q = q1, . . . , qn and jointly encrypts these
with V , with both parties learning a vector of ciphertexts q̂
as output. Then, C forwards q̂ to S, receiving an encrypted
response r̂ in exchange. At this stage of the protocol, C
forwards r̂ to V so that both parties may verify the tags
on r̂: both parties learn a single bit indicating if the tag
check passed or not. In practice, we instantiate this portion

4. We detail a formalisation of ZKPVS schemes in Section B.3. Practical
variants of such schemes exist for ECDSA signatures [59, 60, 61].

5. Sending and verifying the proof can be alternatively performed later
in the DCTLS protocol, without compromising security.

Figure 3. The DiStefano query phase. Purple represents messages sent or
calculated by V , orange by C, pink by S, and black for 2PC between C
and V .

Verifier Client Server

q̂ ← AEAD .Enc(tkvcapp ⊕ tkccapp, IVc, q)

q ← AEAD .Dec(tkcapp, IVc, q̂)

r̂ ← AEAD .Enc(tksapp, IVs, r)
r ← AEAD .Dec(tkvsapp ⊕ tkcsapp, IVs, r̂)

of the protocol using the AES-GCM approach described
in Section 5. There is no explicit dependence on AES-GCM:
any AEAD cipher supported by TLS 1.3 will suffice. We
highlight this and provide the general security formalisation
of the phase in Section 6.

Extending the query phase to multiple rounds is straight-
forward using AES-GCM. We discuss the details of com-
mitting to ciphertexts in Section 5.1, but the main idea is
that, as each ciphertext block qi is encrypted with a unique
key ei = AES.Enc(k, IV +i), C and V can arbitrarily reveal
their shares of ei at any stage of the query phase, provided
an appropriate commitment has been made beforehand. As
these key shares are ephemeral, revealing them does not
compromise the shares derived during the HSP. The security
of this approach directly reduces to the difficulty of recover-
ing an AES key from many known plaintext/ciphertext pairs.
This permits many useful applications, as C and V can now
nest commitment rounds inside of the query phase.

4.3. Commitment Phase: CP

The objectives of the commitment phase (Fig. 4) are:
i. to assure V of the authenticity of S (as belonging to the
pre-approved set R) without revealing the exact server C
communicated with; and ii. to allow C to learn secrets held
by V only after producing binding commitments to a specific
portion of the TLS session with S.6

To validate the authenticity of the server, V verifies a
proof (with a ZKPVS scheme) of the TLS server that they
communicated with as one of N servers from which V
accepts attestations.7 After verification, C can now commit
to and reveal information about the application traffic they
witness. For this, first, we define a commitment scheme (Γ)
that can be implicitly constructed using the outputs of QP
with the following algorithms.
• (q̂i, r̂i) ← Γ.Commit(spC , (q̂, r̂, i)): For the input i,

output the ciphertexts (q̂i, r̂i) corresponding to the ith

query qi, and the response ri.
• spV ← Γ.Challenge((q̂i, r̂i)): Output the secret param-

eters of V: reveals V’s key share and a challenge.
• b ← Γ.Open((spC , spV), (q̂i, r̂i), (qi, ri)): Check that
(q̂i, r̂i) decrypts to (qi, ri), and output b = 1 on
success, and b = 0 otherwise.

6. Note this applies for both the handshake and record phases.
7. This could be performed during the handshake phase. For performance

reasons, it is preferable to do so in the commitment phase, when online
communication is no longer constrained by potential handshake time-outs.
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Figure 4. The DiStefano commitment phase with a commitment scheme,
Γ, and a ZKPVS scheme, Π for TLS signatures under a set R of pre-
approved servers. Purple represents messages sent or calculated by V , and
orange by C.

Verifier Client

σ ← Π.Prove(R,Sig,Label7 ∥H3)
abort if 1 ̸= Π.Verify(R, σ,Label7 ∥H3)

c← Γ.Commit((tkccapp, tk
c
sapp), (q̂, r̂))

Forward tkvcapp, tk
v
sapp to Client

Note that the client simply commits to encrypted traffic
exchanged during QP (using 2PC to encrypt and decrypt
the traffic). When it comes to opening the encrypted traffic,
the protocol requires V to reveal their key secret share, so
that C can decrypt and then reveal the plaintext values.
We give a concrete construction of Γ that is perfectly
hiding and computationally binding, based on AES-GCM,
in Section D.2.

4.4. Subsequent Phases

It is important to note that in the real DiStefano proto-
col, C does not send any unencrypted values to V . Instead,
both parties should execute a protocol that proves certain
facts about the DCTLS commitments, without revealing
anything else. This could be done using zero-knowledge
proofs, selective opening strategies (as is used in DECO), or
subsequent 2PC. The formal commitment opening process
that we described previously can be used for this, since C can
now use the combined secret parameters (spC , spV) to prove
any statement about the commitment (q̂i, r̂i). Note that the
proving process can inadvertently leak the identity of S
(invalidating the ZKPVS proof) if a certain data is assumed
from S’s traffic. See Section G for a wider discussion.

5. Adapting AES-GCM For 2PC

AES-GCM is an authenticated encryption with asso-
ciated data (AEAD) cipher that features prominently in-
side TLS implementations, with some works reporting that
over 90% of all TLS1.3 traffic is encrypted using AES-
GCM [30]. We use this algorithm for both encrypting the
corresponding handshake messages and any application traf-
fic. Here we describe how to commit to decryptions of
ciphertexts in AES-GCM (Section 5.1), as well as optimi-
sations that make it more amenable to 2PC evaluation of
the encryption and decryption procedures (Section 5.2). We
briefly recall how AES-GCM operates.
AES-GCM Encryption. Let k and IV refer to an
encryption key and initialisation vector. Given as input
a sequence of n appropriately padded plaintext blocks
M = (M1, . . . ,Mn), AES-GCM applies counter-mode
encryption to produce the ciphertext blocks Ci = Mi ⊕
AES.Enc(k, IV + i). To ensure authenticity, the algorithm
outputs a tag τ = Tagk(A,C, k, IV ) computed over C and

any associated data A (i.e. any data that is authenticated but
not encrypted [62], e.g, protocol headers or metadata) as
follows:
• Given some vector x ∈ Fm

2128 , we define the polynomial
Px =

∑m
i=1 xi · hm−i+1 over F2128 .

• Assuming that C and A are properly padded,
we compute τ (where h = AES.Enc(k, 0))
as: τ(A,C, k, IV ) = AES.Enc(k, IV ) ⊕
PA||C||len(A)||len(C)(h).

5.1. Commitment to AES-GCM Ciphertexts

In DiStefano, both C and V learn all AES-GCM cipher-
text blocks Ci = Mi⊕AES.Enc(k, IV + i) produced by S,
where the session key k = kc + kv is secret-shared across
both C and V . We briefly describe how C can commit to the
received ciphertext blocks Ci without revealing their key
share kc. Note first that the use of AES-GCM in an AEAD
setting leads to a non-committing cipher [63], meaning that
an adversary in possession of a key k and a valid ciphertext
block Ci = AES.Enc(k, IV + i) ⊕Mi can find a distinct
k′ ̸= k such that Ci = M ′i ⊕ AES.Enc(k′, IV + i) is a
valid ciphertext. From the perspective of DCTLS protocols,
this non-committing nature of the algorithm presents a chal-
lenge, as C typically only proves statements after learning
the entirety of the key. We circumvent the issue as follows.

Assume that C receives a single tuple of an AES-GCM
ciphertext and tag, (Ci, τ), from S that they wish to decrypt.
As C only holds a share (kc) of k, C cannot decrypt Ci

by themselves. Thus, C forwards (Ci, τ) to V , and they
engage in a maliciously-secure 2PC protocol to validate τ
on Ci (Algorithm 2). If it succeeds, then both C and V are
convinced that Ci is a valid ciphertext under k. Yet, we must
be careful how we reveal Mi = AES.Enc(k, IV + i) ⊕ Ci

to each party as revealing Mi to C allows them to mount
the outlined non-committing attack, while revealing Mi to
V would violate the privacy guarantees of DCTLS. In order
to resolve this issue, we use a modified 2PC AES decryption
protocol that, after checking that the client input masks
match the commitments held by V and validating τ , outputs
ei = AES.Enc(k, IV + i) to C and a commitment, Ei, to ei
to V . With this, notice that C is unable to exploit the non-
committing nature of AES-GCM as a binding commitment
to ei is created and validated by V . Moreover, C can now
reveal individual blocks to V without requiring either party
to reveal their key share: C can reveal a particular block Ci

by simply forwarding ei to V . In other words, this tweak al-
lows C to engage in a selective opening protocol with V (we
provide details of this technique in Section G). Producing
these set of commitments is cheap as, in practice, we simply
require C to commit to n unique masks bi and then output
Ei = AES.Enc(k, IV + i) ⊕ bi. We formalise this scheme
in Section D.2. Checking random-oracle commitments in
2PC is practical. Using a low-depth hash function, such
as LowMC [64], this would cost 4370 AND gates for the
full commitment check [65], which is cheaper than a single
AES block evaluation (6400 AND gates). Above all, the
practical costs of the 2PC commit scheme are low, and
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we demonstrate this using a higher-depth, AES-based hash
(see Section 7).

5.2. 2PC Performance Optimisations

We now discuss some cryptographic optimisations that
are necessary for ensuring the high performance of AES-
GCM encryption/decryption during online TLS operations.
The ideal functionalities that we use to describe AES-GCM
in 2PC and the security proofs of the optimisations are given
in Section D.1.
Efficiency. Despite its simplicity, executing AES-GCM
encryptions in a multi-party setting can be challenging due
to the use of binary and arithmetic operations. For example,
whilst AES operations are well-suited for garbled circuits,
a single multiplication over F2128 typically requires around
16K AND gates, increasing the cost by nearly a factor of
3. To mitigate this cost, both [2] and [12] recommend com-
puting shares of the powers of h (denoted as {hi}) during
an offline setup stage, amortising the cost across the entire
session. In certain settings, this cost can be reduced further
by restricting how many powers of h are used: for example,
MPCAuth [18] employs a clever message slicing strategy to
minimise the value of i with the assumption that servers only
send rather small ciphertexts (e.g., at most 4KiB). However,
TLS 1.3 servers can send ciphertexts bigger than that in or-
der to avoid overhead: web servers, for example, that deliver
video stream [66] or large files [67] might send responses
significantly larger than 4KiB, requiring more ciphertext
blocks to be handled. It is recommended [68], for example,
that when the connection congestion window is large and
a large stream (e.g., streaming video) is transferred, that
the size of the TLS 1.3 record should be increased to span
multiple TCP packets (up to 16KiB) to reduce framing and
CPU overhead. There is no “optimal” record size, but rather
it is dynamically adjusted based on the state of the TCP
connection. Due to this, in DiStefano we allow for this
flexibility, as we explicitly target the largest possible TLS
ciphertext of 16KiB, which corresponds to i = 1024.

Assuming that a sharing ({hi
c}, {hi

v}) exists, produc-
ing tags in 2PC is straightforward: tagging n blocks re-
quires two local polynomial evaluations (writing τc =
PA||c||len(A)||len(c)({hi

c}) and τv = PA||c||len(A)||len(c)({hi
v}),

respectively) over F2128 and n + 1 2PC evaluations of
AES [12, 2]. The final tag is achieved by simply computing
τ = τc+ τv⊕AES.Enc(kc + kv, IVc). In order to make this
more efficient, it is necessary to initially construct a 2PC
protocol that evaluates the ciphertext c and outputs to both
parties, and then have a subsequent protocol that computes
the tag for this ciphertext, based on the local polynomials
submitted by the client.
Our optimisations. DECO gives few details on how to
compute shares of the powers of h, other than that they
are computed in a 2PC session. We remark that calculating
these shares in a garbled circuit is unlikely to be feasible: our
adapted version of MPCAuth’s share derivation circuit con-
tained around 17M AND gates, and required over 900MiB

and 18GiB of network traffic and memory, respectively, just
for the pre-processing stage. For comparison, our circuits for
TLS 1.3 secret derivation contain around 1.3M AND gates
in total, which is approximately a factor of 14 smaller. Thus,
using only garbled circuits is unlikely to be feasible.

Several other approaches exist for computing the shares
of {hi}. For instance, PageSigner [12] reduces computing
additive shares of hi to simply computing shares using MtA
computations. Given an initial additive sharing h = hc+hv,
C and V iteratively compute additive shares of ℓc + ℓv =
hn = (hc + hv)

n−1
(hc + hv) for 1 < n ≤ 1024. This

approach permits an additional optimisation: as (x+ y)
2
=

x2 + y2 over F2128 , each party can compute shares of even
powers of h locally. Taking this optimisation into account,
producing shares in this way costs a total of 1022 MtA
operations. However, as computing shares of any odd hi

requires first computing shares of hi−2, the approach seems
to require around 500 rounds, which is likely too slow for
a WAN setting.

We improve upon this by replacing the additive sharing
h = h1 + h2 with h = h1/h2, i.e. using a multiplica-
tive sharing. By using multiplicative shares, we can run
each MtA computation in parallel, with each Pi supplying
hi, hi

3, . . . , hi
1023 as input. This optimisation asymptoti-

cally halves the number of MtA operations and reduces
the round complexity to a single round, as the only costly
operation is the share’s computation, which is not carried out
inside the garbled circuit. However, this tweak does require
a slightly more complicated scheme for computing the initial
sharing of h, as we now must compute multiplication over
F2128 , taking the size of the circuit for deriving the initial
shares to around 23K AND gates. In practice, we reduce
the size of this circuit to around 18K AND gates by instead
using a carry-less Karatsuba [69] algorithm. Whilst this still
represents an increase of around a factor of 3 compared to
the additive circuit, the reduction in MtA operations and
rounds means that we are able to achieve an end-to-end
speed-up of around a factor of 3. We discuss these results
in more detail in Section 7.

6. Security Analysis

Previous DCTLS protocols use all-encompassing ideal
functionalities and Universally-Composable (UC) security
proofs [70], proving that the entire flow from handshake to
attestation is secure. This is problematic for cryptographic
agility, as it means that any modification to the TLS ci-
phersuite, 2PC functionality, or protocol extensions would
necessitate a complete rewrite of the proof. Such agility
is critical for building flexible secure systems, that can be
modified easily even if primitives and systems change [35].

We reimagine the security model for DCTLS proto-
cols in two ways. First, our analysis breaks the protocol
down into three phases: handshake, query, and commitment;
and guarantees security of each independently. Second,
where possible, we adapt the security analysis to either
the standalone or game-based security models. UC security
proofs are particularly useful when building atomic protocol
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primitives, intended for arbitrary composition with other
primitives. Since DCTLS is a high-level protocol that is
likely to be used as a single application, we believe that our
approach captures a natural security requirement, without
the added complexity for ensuring UC security. Without
this complexity, modifying both individual phases of the
protocol and cryptographic primitives is an easier task for
future work. We give a short overview of how we model
security for each phase in the following. The full standalone
security model is covered in Section E.

Handshake phase. We model the handshake phase as in
the work of Oblivious TLS [17]. Essentially, this model
proves that we can satisfy the original guarantees proven
about TLS 1.3 [29] (i.e. related to Match and Multi-Stage
security) even when executing certain functionalities in 2PC.
One key difference noted by [17] is that the presence of the
verifier means that potential TLS 1.3 adversaries can alter
the derivation of secrets in the client, and thus security is
based on a modified Shifted PRF ODH assumption, see [17,
Definition 2] for more details. Oblivious TLS produces a
UC-security proof for the handshake phase of the protocol,
based on maliciously-secure 2PC primitives, and two parties.
In our setting, we have an information imbalance, in that
V has fewer powers than one of the two parties analysed
in [17], as only C interacts with S directly, while V does not
interact with S directly at all. As a result, the analysis of [17]
is sufficient for covering our required security guarantees,
as long as each 2PC primitive is maliciously-secure. We
provide an overview of the protocol execution in Fig. 7,
and a more detailed analysis of security in Section E.1.

Query execution phase. The query phase of DiStefano
essentially amounts to considering a 2PC realisation of the
record-layer of the TLS 1.3 protocol. We define 2PC ideal
functionalities (Algorithms 6 and 7) that abstract the core
encryption and decryption functionality for application traf-
fic. We show that we can prove security of this phase based
on the 2PC realisation of the AES-GCM functionalities
that we formalise in Section D.1 (Algorithms 1 and 2),
that together implement the functionality and optimisations
described in Section 5. To prove security of alternative
ciphersuites, it is simply a matter of implementing the 2PC
ideal functionalities using different primitives.

Commitment phase. We model the commitment phase in a
game-based security model (Section E.3). We provide mul-
tiple security notions (Figure 8) that evaluate the capacity of
the protocol to satisfy: session privacy (SPriv), i.e. commit-
ted sessions are indistinguishable; 1-out-of-N authentication
(SAuth1n), i.e. the client is forced to successfully authenticate
the TLS server amongst N possible apriori-chosen servers;
and session unforgeability (SUnf), i.e. the client cannot
arbitrarily forge sessions that did not occur. In the end, we
show that DiStefano satisfies these properties based on the
commitment scheme devised from AES-GCM (Section D.2),
and the zero-knowledge proof scheme (ZKPVS) for valid
TLS signatures [60] (Section B.3).

7. Experimental Analysis

Implementation. In order to enable easy integration with
other cryptographic libraries and browsers, we implemented
a full prototype of DiStefano in C++.8 This implementation
contains around 14k lines of code, tests and documenta-
tion, and implements the whole protocol. We developed
this implementation using C++ best practices, and we hope
that this effort is useful for other researchers. Concretely,
our implementation of DiStefano uses BoringSSL for TLS
functionality and emp for all MPC functionality. BoringSSL
is the only cryptographic library supported by Chromium-
based Internet browsers. As far as we are aware, our im-
plementation contains primitives and circuits that are not
available elsewhere. Our implementation also contains a
modified version of MPCAuth’s circuit generation to pro-
duce the relevant garbled circuits. We further reduce the
online cost of MPCAuth’s secret sharing scheme by using
a pre-determined splitting scheme for specific secrets.9 We
list the changes made alongside our prototype10, and discuss
them in Section J. Note that further performance improve-
ments, including multithreading, are not addressed in this
implementation and are the subject of future work.
Results. We evaluated the performance of DiStefano in
LAN and WAN settings. For the LAN environment, we
use a consumer-grade device (a Macbook air M1 with
8GB of RAM) for C, and a server-grade device (an Intel
Xeon Gold 6138 with 32GB of RAM) for V and S. All
communication used in TLS 1.3 was carried out using a
single thread over a 1Gbps network with a latency of
around 16ms. eor the WAN setting, we provide various
settings depending on regions. We place C in Paris, France
using a AWS EC2 “t2.2xlarge” machine for all settings,
but locate the AWS EC2 “t2.2xlarge” machine for V and
S in three regions: Ohio, USA; London, UK; and Seoul,
South Korea. We report their latency based on [71]. For the
first region, the median round-trip latency is estimated at
94.15ms as reported by 13 measurements, and the first and
third quartiles are 92.83ms and 95.53ms, respectively. For
the second region, the median round-trip latency is estimated
at 9.07ms as reported by 13 measurements, and the first and
third quartiles are 2.08ms and 3.31ms, respectively. For the
thrid region, the median round-trip latency is estimated at
247.91ms as reported by 13 measurements, and the first and
third quartiles are 246.57ms and 248.87ms, respectively.
Timings and bandwidth measurements are computed as the
mean of 50 samples, and are represented in milliseconds
and mebibytes, respectively (1 MiB is 220 bytes).

Table 1 gives results for each individual circuit used in
DiStefano. Each circuit is evaluated without amortization,
meaning these timings do not benefit from the amortized
pre-processing available in emp. We note that the 2PC-
GCM circuit includes both encryption and decryption of

8. https://github.com/brave-experiments/DiStefano
9. This approach is less flexible than MPCAuth. For example, DiStefano

only supports 2 parties, whereas MPCAuth supports arbitrarily many.
10. https://github.com/brave-experiments/DiStefano, section “Changes

introduced”.
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Table 1. GARBLED CIRCUIT TIMINGS AND BANDWIDTH.

Circuit OT Offline Online Bandwidth

AES-GCM share (K) LD 2340 34.92 21.04
AES-GCM share (K) FC 2683 59.48 9.009
AES-GCM share (N) LD 2678 39.09 25.63
AES-GCM share (N) FC 2853 61.36 10.35
AES-GCM Tag LD 1019 22.30 7.604
AES-GCM Tag FC 2336 22.22 5.010
AES-GCM Verify LD 1032 21.16 7.746
AES-GCM Verify FC 2277 21.24 5.130
TLS 1.3 HS (P256) LD 51470 93.16 305.1
TLS 1.3 HS (P256) FC 19847 88.90 113.3
TLS 1.3 HS (P384) LD 51610 95.38 305.8
TLS 1.3 HS (P384) FC 19940 89.88 113.6
TLS 1.3 TS LD 51450 95.21 243.7
TLS 1.3 TS FC 18820 99.25 91.12
2PC-GCM (256B) LD 18690 82 131.4
2PC-GCM (256B) FC 10971 80 47.5
2PC-GCM (512B) LD 31534 136 206.5
2PC-GCM (512B) FC 16010 142 77.75
2PC-GCM (1KiB) LD 57485 252 409.4
2PC-GCM (1KiB) FC 26154 301 151.2
2PC-GCM (2KiB) LD 114820 728 815.4
2PC-GCM (2KiB) FC 48764 763 299.3

Each garbled circuit is reported in terms of offline/online times
(ms) and total bandwidth (MiB) costs. “K” means Karatsuba and
“N” means Naive. “LD” refers to “LeakyDeltaOT” and “FC”
means “FerretCOT”. Optimal cases are highlighted in green.

traffic, as specified in Algorithms 1 and 2, using a random-
oracle (AES-based) commitment scheme. As the most ex-
pensive operation of these circuits will only be used once per
session, we do not expect that employing amortisation will
yield a substantial speed-up. However, employing amortisa-
tions for common operations (e.g. AES-GCM tagging and
verification) may lead to faster running times (see [48, §7]
for concrete speed-ups). We also compare the offline time
using the original implementation of authenticated garbling
(LeakyDeltaOT[48]) against FerretCOT. Our results show
that FerretCOT outperforms the original OT for large circuit
sizes in both bandwidth and running time. However, for
smaller circuits it appears that the original OT is faster at
the cost of more bandwidth. Given that the pre-processing
times are proportional to the size of the circuits, our results
appear to be predominantly network bound. The results also
highlight that our Karatsuba-based circuit achieves modest
gains in both bandwidth and time over the naive circuit.

Table 2 shows the results for each arithmetic primitive
used. The running times and bandwidth usage are notably
low, suggesting that these primitives will not pose a bottle-
neck, even in constrained network environments. Notably,
the tweak introduced in Section 5.2 reduces the running time
by a factor of around 3, whilst also halving the required
bandwidth for the multiplication (this ignores bandwidth
used by shared setup). This all represents an improvement of
around 4 orders of magnitude over using a garbled circuit.

The timings indicate that our implementation of DiS-
tefano is competitive with DECO, with the DCTLS online
portion taking ≈ 500ms to complete for a 256-bit secret
in a LAN setting. These conclusions are consistent across

Table 2. PRIMITIVE TIMINGS AND BANDWIDTH.

Primitive (algorithm) Time (ms) Bandwidth (MiB)

ECtF (P256) 336.1 0.768
ECtF (P384) 335.5 1.295
ECtF (P521) 421.4 2.442
MtA (P256) 33.67 0.086
MtA (P384) 40.65 0.127
MtA (P521) 55.83 0.241
AES-GCM powers (mul.) 1694 0.049
AES-GCM powers (add.) 5926 0.080
AES-GCM powers (GC) — 900

Table 3. E2E TIMINGS (MS) AND BANDWIDTH (MIB) FOR DCTLS IN
LAN SETTINGS (WITH LATENCY ≈ 16ms).

Process LAN (ms) Bandwidth (MiB)

Offline costs

C/S Key Share 1.3167 6.67572e-05
C/V execute ECtF 0.008083 9.53674e-07
Circuit Preprocessing 6280.08 220.484

Online costs

S sends cert. 0.011375 3.14713e-05
Derive traffic secrets 33.1389 0.0276108
Derive GCM shares 136.573 0.0488291

both the individual and E2E timings (cf. Table 3). Our
WAN experiments model (as seen in Table 4) realistic E2E
executions in different regions of the world with low to
high latency. The results indicate that the running times
roughly increase by the amount of latency introduced. The
only deviations occurred are related to either circuit prepro-
cessing — which increases it, but is an offline amortisable
cost — and the derivation of GCM shares — which reflects
the multi-round trip time nature of this part of the protocol.
Even so, the GCM shares derivation still takes less than a
second, and the total online costs are significantly lower than
standard online TLS handshake timeout times which, while
configurable, are typically between 10 and 20 seconds [24].
Finally, we note that increasing latencies only appear to
impact the protocol sublinearly, and thus we expect that
DiStefano across a variety of browsing scenarios.

7.1. Comparisons with prior work

DECO-like protocols. We note that comparisons between
our results and previous DECO-like protocols for commit-
ting to TLS 1.2 traffic [2, 12] should be made carefully.
In the case of DECO, their implementation is not publicly
available, and we were unable to reproduce any of their
results. Moreover, as our implementation is single-threaded,
we are unable to take advantage of emp’s multi-threaded
pre-processing. Given that [48, §7] reports an order of mag-
nitude increase in bandwidth due to multi-threading, it is not
surprising that our offline times are an order of magnitude
higher. However, our online timings are comparable with
DECO, and parallelising the pre-processing stage would
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Table 4. E2E TIMINGS (MS) AND BANDWIDTH (MIB) FOR DCTLS IN
WAN SETTINGS. ALL TIMES ARE REPORTED IN MS.

Process WAN-Ohio WAN-London WAN-Seoul

Offline costs

C/S Key Share 102.4682 12.2567 252.1662
C/V execute ECtF 112.6829 2.5680 285.9367
Circuit Preprocessing 8958.3445 6236.5134 10417.6417

Online costs

S sends cert. 125.9581 2.3673 12.2567
Derive traffic secrets 130.9039 43.6089 273.2959
Derive GCM shares 494.3445 149.2039 872.4691

likely mitigate any discrepancies.11 As pre-processing can be
carried out before, we do not consider this a major issue. It
is also difficult to compare our timings to PageSigner. Their
original implementation is written entirely in Javascript,
preventing the usage of dedicated hardware resources. Given
that our implementation is instead written in C++, we might
expect DiStefano to be faster. PageSigner also follows a
semi-honest security model and targets TLS 1.2, which are
incompatible with DiStefano.
Janus. The work of Janus [15] builds similar DCTLS func-
tionality for certain ciphersuites of TLS 1.3. Their reported
timings assume a latency of 0ms, which fails to model the
impact of network bandwidth on protocol runtimes. As such,
we can only make coarse-grained analysis of their hand-
shake and record-layer functionality, for their reported 256B
queries 2 kB responses. The overall online communication is
1072KiB, while offline communication is 320MiB. In DiS-
tefano, the online communication is 76KiB, while offline
communication is 220.5MiB. In terms of runtime, Janus
reports around 2 s of offline costs, and 1.55 s of online costs
(with latency of 0ms) when run on an Apple Macbook
M1 processor. For DiStefano, in the LAN setting (with
latency estimated at 16ms), offline runtimes are 6.28 s,
which is clearly slower than the claims of Janus. However,
the online runtimes are significantly quicker: around 0.1 s.
This provides much more flexibility in the critical phase of
the protocol, which is prone to server timeouts, while the
offline phase can be performed at any moment. We reinforce
that this comparison is not completely accurate as Janus does
not report a full LAN/WAN simulation, where the impact
of network latency is included. Finally, as explained in Sec-
tion I, Janus shifts the verification of the 2PC functionality
to later stages of the protocol, which can lead to violations
of the malicious security model. DiStefano, in comparison,
is proven secure in a fully malicious setting.

8. Discussion

8.1. Related Work

As noted in Section 2, DiStefano is an instance of a
DCTLS protocol. Other alternatives exist, but all have limita-

11. Notably, [2] does not mention if the pre-processing is multi-threaded.

tions as noted in Section 2.2. We summarise the comparison
in Table 5, and discuss further below.

The DECO and PageSigner protocols, for example, only
(formally) work for TLS 1.2 and under, and provide limited
privacy. TownCrier [13] has similar problems, and requires
using trusted computing functionality. Recently, the PECO
protocol [38] was proposed, which informally extends the
DECO protocol to support TLS 1.3, but provides no formal
guarantees nor implementation of it.

MPCAuth [18] allows a user to authenticate to N servers
independently by doing the work of only authenticating to
one. An N -for-1 authentication system consists of many
servers and users. Each user has a number of authentication
factors they can use to authenticate. The user holds a secret
s that they wish to distribute among the N servers. The
protocol consists of two phases. In the enrollment phase,
the user provides the servers with a number of authentica-
tion factors, which the servers verify using authentication
protocols: these protocols use a mechanism called “TLS-
in-SMPC” that allows N servers to jointly act as a TLS
client endpoint to communicate with another TLS server.
A single server from the N authorised cannot decrypt any
TLS traffic, and, after authenticating with these factors,
the client secret-shares s and distributes the shares across
the servers. In the authentication phase, the user runs the
MPCAuth protocols for the authentication factors and, once
it is authenticated, the N servers can perform computation
over s for the user, which is application-specific (such as
key recovery, for instance).

The Oblivious TLS protocol [17] allows for any TLS
endpoint to obliviously interact with another TLS endpoint,
without the knowledge that it is interacting with a multi-
party computation instance. It consists of the following
phases: i) Multi-Party Key Exchange, which is the key
exchange phase of the TLS handshake ran in an MPC
manner by performing an exponentiation between a known
public key and a secret exponent, where the output remains
secret; ii) Threshold Signing, which is the authentication
phase of the TLS handshake done by having the TLS
transcript signed with EdDSA Schnorr-based signatures in
a threshold protocol; and iii) Record Layer which is ran by
using authenticated encryption, based on AES-GCM, inside
MPC.

Recent work on zero-knowledge middleboxes for
TLS 1.3 traffic [16] has many similarities with techniques
used in DCTLS protocols. However, the verifier is con-
sidered to be an on-path proxy that receives and forwards
encrypted traffic between the parties (similar to the proxy
model of DECO [2]). Furthermore, the client only produces
commitments to their own traffic, rather than the traffic
received from the server. Applications include increased cor-
porate oversight and enaction of Internet browsing policies
to be enforced by middleboxes, which are naturally thwarted
when all client traffic is sent encrypted over TLS.

Finally, the Janus protocol [15] targets TLS 1.3, but
with the limitation that the client must fix a ciphersuite
apriori, while DiStefano allows for full negotiation of any
TLS-supported ciphersuite. In addition, the Janus security
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Table 5. COMPARISON OF DCTLS-LIKE PROTOCOLS. †SEE SECTION 8.1

Protocol TLS 1.3 Attest Ring auth

DECO-like[2, 13] ✗ ✓ ✗
MPCAuth[18] ✓ ✗ ✗
Oblivious TLS[17] ✓ ✗ ✗
ZKMiddleboxes[16] ✓ C → S ✗

Janus[15] ✓† ✓ ✗
DiStefano ✓ ✓ ✓

Table 6. RESULTS FOR RUNNING KeyUpdate IN 2PC.

Circuit OT Offline (ms) Online (ms) Bandwidth (MiB)

KeyUpdate LD 10540 29.95 98.54
KeyUpdate FC 7960 31.96 31.61

model leaves open the possibility of theoretical attacks by
malicious actors, see Section I for more details.

Concurrent work. Xie et al. [14] propose a series of
optimisations to the MPC protocols used inside DECO,
targeting TLS 1.2. Whilst most of these improvements are
orthogonal to our work, one interesting optimisation is a
faster approach for deriving TLS traffic secrets inside gar-
bled circuits. This approach is reminiscent of the highly opti-
mised CBC-HMAC protocol proposed in DECO [2, §4.2.1]
for computing tags in 2PC. We remark that incorporating
this particular optimisation into our secret derivation process
seems non-trivial: we discuss these difficulties in Section H.

8.2. Applications

Attestations. DiStefano produces commitments to en-
crypted TLS 1.3 data which, as noted in [2], can be used
as the basis of zero-knowledge proofs (or attestations) for
showing that certain facts are present in such data. How-
ever, such attestations can also be constructed via different
methods, using cooperative decryption of certain ciphertext
blocks, or more generic 2PC techniques. The DECO proto-
col provides examples that they can prove certain statements
for, including proof of confidential financial information,
and proof of age. It should be noted that TLS sessions could
serve as the basis for more generic user credentials, proving
arbitrary facts about a user. For a complete summary, see [2].

Concrete applications of DiStefano include: i. leverag-
ing attestations to produce strong signals of anti-fraudulent
behavior by attesting the inclusion of statements over bank
account balances or proofs of transactions, which helps
prove that a user is not engaging in fraud, as such signals
are expensive for bots to replicate; ii. using attestations to
verify “real” events by producing statements that confirm the
origin and trustworthiness of data, helping to demonstrate
that it was not generated by Artificial Intelligence (AI); and
iii. attesting to a user’s honesty (by exporting multiple TLS
attestations) over a long time period, to grant them access
to other privacy-preserving protocols [72, 73].

8.3. Limitations

Our implementation of DiStefano does not support key
rotation via KeyUpdate messages or full 0-RTT mode, but
this limitation is not major: it can be circumvented by simply
re-running the HSP.12 We also provide no concrete instantia-
tion of the zero-knowlege primitives that can be used to cre-
ate attestations, but they should follow the guidelines stated
in Section 4.4. Said proofs must also be mindful of user
privacy concerns: if proof circuits explicitly target server-
specific HTML formats, this will undo the zero-knowledge
authentication privacy guarantees of the ZKPVS approach.
Note also that the ZKPVS scheme preserves anonymity only
amongst the set R: we address this point in Section B.3.

DCTLS protocols assume user commitments are mean-
ingful, and that S stores only correct data. Suppose a user
wants to provide a proof of their age from a government
agency website. They will log in to the website and then
run DiStefano to produce a commitment to their age, based
on the data present. This process assumes the authentication
process is sound, which may not be the case (if the account
is stolen or fake). V should only accept commitments from
a S that it trusts to correctly store user data.

It is important to note that DCTLS protocols could
become actively harmful tools for monitoring or censoring
client traffic in certain applications, especially in automated
systems without human involvement. For instance, they
could be exploited to scan and censor specific statements
posted by digital activists on social media in order to
censor them, which is a known technique used around the
world [74, 75]. Thus, we would like to emphasise that
deployment of tools such as DiStefano must be considered
carefully in such contexts. Furthermore, DCTLS can be
subject to different legal and compliance issues if considered
as a form of webscraping. The compliance of DCTLS tools
with a given website’s terms of service, for example, is an
application-specific question in their legal context.

8.4. Browser Integration

DiStefano can be integrated into any browser that
uses BoringSSL, e.g. Google Chrome/Brave, easily. As our
changes to BoringSSL itself are rather minimal, it would be
possible to describe our changes as a series of deltas in a
version control system, which can then be applied during
the process of building the browser based on build flags.13

We leave the completion and deployment as future work.

9. Conclusion

We build DiStefano, a DCTLS protocol that generates
private commitments to encrypted TLS 1.3 data. We use a
modular, standalone security framework that provides ma-
licious security, and guarantees privacy for client browsing

12. For completeness, we benchmarked the cost of running the
KeyUpdate operation in a garbled circuit, see Table 6.

13. Indeed, such a system is already used for the Brave Browser.
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patterns amongst pre-approved servers. We provide an open-
source integration in BoringSSL, and demonstrate the online
efficiency of DiStefano for believable workloads.14 The
flexibility, security, and deployability of DiStefano makes
it an immediate candidate for real-world applications.
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derSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann,
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, pp. 5–17.

[26] K. Arai and S. Matsuo, “Formal verification of TLS 1.3 full
handshake protocol using proverif (Draft-11),” IETF TLS mailing
list, 2016. [Online]. Available: https://mailarchive.ietf.org/arch/msg/
tls/NXGYUUXCD2b9WwBRWbvrccjjdyI

[27] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “DROWN:
Breaking TLS using SSLv2,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, August
2016, pp. 689–706. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/aviram

14

https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://eprint.iacr.org/2022/878
https://gdpr-info.eu/art-20-gdpr/
https://gdpr-info.eu/art-20-gdpr/
https://old.tlsnotary.org/pagesigner
https://github.com/brave-experiments/DiStefano
https://doi.org/10.1145/2976749.2978326
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/1377
https://eprint.iacr.org/2023/1377
https://eprint.iacr.org/2023/1377
https://doi.org/10.1145/3442381.3450057
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://github.com/emp-toolkit
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram


[28] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: Taming the composite state machines of
tls,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp.
535–552.

[29] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the TLS 1.3 handshake protocol,” Journal of Cryptology,
vol. 34, no. 4, p. 37, Oct. 2021.

[30] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of tls 1.3 on
the web: A story of experimentation and centralization,” SIGCOMM
Comput. Commun. Rev., vol. 50, no. 3, p. 3–15, jul 2020. [Online].
Available: https://doi.org/10.1145/3411740.3411742

[31] T. Team, “TLSNotary: Proof of data authenticity,” 2023, https://
tlsnotary.github.io/landing-page/. Accessed 04/04/2023.

[32] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, p. 991–1008. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck
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Appendix A.
TLS 1.3 Handshake

An overview of the TLS 1.3 handshake is given in Fig. 5,
our notation is based on the notation defined in [29], which
we provide in Table 8 and Table 7 for completeness.

Appendix B.
Additional Cryptographic Preliminaries

We provide some additional cryptographic preliminaries
that are required for arguing the security of our system.

B.1. Commitment Schemes

Definition 3 (Commitment scheme). A commitment scheme
Γ is a tuple consisting of the following algorithms:
• Γ.Gen(1λ): outputs some secret parameters sp;
• Γ.Commit(sp, x): outputs a commitment c;
• Γ.Challenge(c): outputs a random challenge t;
• Γ.Open(sp, c, t, x): outputs a bit b ∈ {0, 1}.

An interactive commitment scheme, Γ̃, between a com-
mitter, C, and a revealer, R, proceeds as follows:
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Figure 5. TLS 1.3 handshake with certificate-based authentication. Short-
hands correspond to [29]. Purple represents messages sent or calculated by
C, pink by S. Messages with an asterisk (*) are optional, and those within
braces ({}) are encrypted.

Client Server
static (Sig): pkS , skS

ClientHello:
rc←$ {0, 1}256, xc←$ Zq

+ClientKeyShare: Xc ← gxc

ServerHello: rs←$ {0, 1}256, ys←$ Zq

+ServerKeyShare: Ys←$ gys

DHE← Y xc
s DHE← Xys

c

HS← HKDF .Extract(∅,DHE)

CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHS← HKDF .Expand(HS,Label3 ∥H1)

tkchs ← DeriveTK(CHTS)

tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

MS← HKDF .Extract(dHS,∅)

CATS← HKDF .Expand(MS,Label5 ∥H2)

SATS← HKDF .Expand(MS,Label6 ∥H2)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ∥H5)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF ← HMAC(fkC ,H6))

tkcapp ← DeriveTK(CATS)

tksapp ← DeriveTK(SATS)

abort if Verify(pkc,Label8 ∥ ∥H5,Sig) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

• C runs sp ← Γ.Gen(1λ), and sends c ←
Γ.Commit(sp, x) to R;

• R sends t← Γ.Challenge(c) to C;
• C sends x to R;
• R outputs b

?
= 1, for b← Γ.Open(sp, c, t, x).

Definition 4 (Binding property). Given sp ← Γ.Gen(1λ).
We say that Γ is a computationally binding commitment
scheme if, for any PPT algorithm, the following holds:

Pr

[
0← Γ.Open(sp, c∗, t∗, x′)

∣∣∣∣ (x∗,c∗)←A(1λ)
t∗←Γ.Challenge(c∗)
x′←A(1λ);x′ ̸=x∗

]
> 1−negl(λ).

We say that Γ is perfectly binding if the same holds for
unbounded algorithms, with probability 1.

Definition 5 (Hiding property). Let sp ← Γ.Gen(1λ),
{xb}b∈{0,1} ∈ {0, 1}2, and {cb ← Γ.Commit(sp, xb)}. We
say that Γ is a computationally hiding commitment scheme
if, for any PPT algorithm, the following holds:

Pr
[
d∗

?
= d

∣∣∣ d←${0,1}
d∗←A(1λ,cd,(x0,x1))

]
< 1/2 + negl(λ).

We say that Γ is perfectly hiding if the same holds for
unbounded algorithms, with probability 1/2.

We show in Section D.2 that AES-GCM ciphertext
commitment scheme in Section 5.1 is perfectly binding
and computationally hiding for TLS 1.3 encrypted data. A
high-level overview of the commitment phase based on this
scheme is given in Section 4.3.

B.2. Authenticated Encryption

An authenticated encryption with associated data
(AEAD) scheme considers a keyspace K, a message space
M, a ciphertext space X , and a tag space T , and is defined
using the following algorithms.
• k ← AEAD .keygen(1λ): Outputs a key k ←$ K.
• (C, τ) ← AEAD .Enc(k,m;A): For a key k ∈ K,

message m ∈ M, and associated data A ∈ {0, 1}∗,
outputs a ciphertext C ∈ X and a tag τ ∈ T .

• m ∨ ⊥← AEAD .Dec(k,C, τ ;A): For a key k ∈ K,
ciphertext C ∈ M, tag τ ∈ T , and associated data
A ∈ {0, 1}∗, outputs a message m ∈M or ⊥.

Any AEAD scheme must satisfy the following guarantees.

Definition 6 (Correctness). AEAD is correct if and only if
the following holds true.

Pr
[
m← AEAD .Dec(k,C, τ ;A)

∣∣∣k←AEAD .keygen(1λ)
(C,τ)←AEAD .Enc(k,m;A)

]
= 1

Definition 7 (Security). An AEAD scheme is secure if it
satisfies the IND-CCA notion of security [76].

It is widely known that the AES-GCM block cipher
mode of operation satisfies these guarantees [77], where
K = {0, 1}λ, M = {0, 1}∗, C = {0, 1}∗. In other words,
it can tolerate messages of arbitrary length and produce
ciphertexts accordingly.

B.3. Zero-knowledge Signature Verification

We require a scheme for constructing zero-knowledge
proofs of knowledge of valid signatures (ZKPVS) of sig-
natures produced during TLS exchanges. Such a scheme
considers a prover and a verifier, where the prover holds a
valid signature σ issued by a keypair sk, vk, and the verifier
holds a list R = {vki}i∈[m] of all valid public verification
keys, where vk ∈ R. Previous work has produced practical
schemes for proving knowledge of ECDSA signatures (e.g.
see ZKAttest [61] and CDLS [60]), noting their similarity
to ring signatures [78], in particular. Similar approaches
for other TLS-compliant signature schemes (e.g. based on
RSA) exist [79], but do not appear to be practical for

17



Figure 6. Security games for establishing anonymity and unforgeability
guarantees of a ZKPVS scheme Π.

Anon

1 : Let {ski, vki}i∈[n], and R = {vki}i∈[n]

2 : (m,R, i0, i1)← AOS,OC({vki}i∈[n])

3 : if [(i0, i1 /∈ [n]) ∨ (vki0 , vki1 /∈ R)] : abort

4 : d←$ {0, 1}
5 : Sig← Ψ. Sign(skid ,m)

6 : σ ← Π.Prove(R, Sig,m)

7 : d′ ← A(σ)

8 : if [d′
?
= d] : return 1

9 : return 0

Unf

1 : Let {ski, vki}i∈[n], and R = {vki}i∈[n]

2 : (m∗, R∗, σ∗)← AOS,OC(R = {vki}i∈[n])

3 : if [(R∗ ̸⊆ R)∨
4 : (∃ i′ ∈ QC s.t. vki′ ∈ R∗)∨
5 : (m∗ ∈ QS)] : abort

6 : return Π.Verify(R∗, σ∗,m∗)

our application (though practical constructions would have
immediate value for our work).

While some previous work refers to the zero-knowledge
functionality that we require as ring signature schemes [59,
61, 60], we note that the functionality differs in that the
eventual proofs are constructed over standard signatures (by
non-signing entities). As a result, we give a modified for-
malisation below in Definition 8 that captures this primitive.

Definition 8 (ZKPoK of Valid signatures). Let R =
{vki}i∈[n] be a collection of public keys for a valid signature
scheme Ψ, and let (sk, vk) be a keypair, such that there exists
a j ∈ [n], where vk = vkj . A scheme for building zero-
knowledge proofs of knowledge of valid signatures (ZKPVS),
Π, is a tuple of the following algorithms:
• Π.Prove(R = {vki}i∈[n],Sig,m): outputs a proof σ of

a valid signature Sig with respect to R;
• Π.Verify(R = {vki}i∈[n], σ,m): outputs a bit b ∈
{0, 1}, where b = 1 indicates successful verification,
and b = 0 indicates failure.

Security properties. We now describe the required security
properties of a ZKPVS scheme. Note that the properties bear
resemblance with ring signature schemes [78]. First, we say
that Π is complete if, for any set of keys {(ski, vki)}i∈[n],
j ∈ [n], message m, the set R = {vki}i∈[n], signature
Sig ← Ψ.Sign(skj ,m), and σ ← Π.Sign(R,Sig,m), then
1 ← Π.Verify(R, σ,m). Second, let Anon and Unf be
the security games defined in Fig. 6. We say that Π is
anonymous (resp. unforgeable) if the advantage of a PPT
algorithm, A in either game is negligible. In both games,
the adversary has access to the following oracles:

• OS: takes as input an index i, a message m′, and a set
R′, and returns a proof σ ← Π.Prove(R′,Sig′,m′) of
a valid signature Sig′ over m′;

• OC: takes as input an index i, and returns the random-
ness used to generate vki.

Furthermore, let QS and QC be the sets of queries sent
to OS and OC, respectively.15

Instantiations. As mentioned above, it is possible to in-
stantiate the required functionality with a specific proof
scheme that generates signatures under ECDSA private keys
that preserve anonymity amongst a set of known ECDSA
verification keys (e.g. see [59, 61, 60]). This means that
we can directly instantiate our DCTLS protocol for servers
using ECDSA signing. Supporting TLS signatures of other
types requires practical instantiations of ZKPVS schemes
for the specific signing method.
Server anonymity. As noted throughout, we introduce
the possibility for C to prove to V that the communicating
TLS server, S, belongs to a pre-approved set, R, of server
identities. This list of identities can be constructed simply
from a list of TLS certificates, and uses a compliant ZKPVS
scheme (Section B.3) for generating proofs of valid TLS
signatures. We note here that anonymity is only preserved
amongst the set R, and is highly application-specific: if
R only contains a single identity, then anonymity is not
guaranteed. However, there are various applications where R
is likely to be non-trivial, such as in the case where C would
like to generate a commitment to a bank balance that is in
a range. In principle, our approach would allow generating
commitments to balances provided by any of a pre-approved
list of banks. In doing so, this would preserve C’s privacy
by hiding the identity of the bank they have an account
with. Similar mechanisms can be built for generating com-
mitments with respect to governmental identities (e.g. social
security statuses associated with EU member states). While
targeting any given applications are beyond the scope of
this work, we believe that the provisioning of the capability
for generating such proofs (which previous works do not
provide) can provide meaningful privacy enhancements for
clients. Note also that a larger R will have an impact on the
performance of the ZKPVS scheme employed, since their
complexity is typically dependent on |R|. Nonetheless, we
believe that even a modest value (e.g. |R| = 10) would
grant meaningful privacy protection. As a concrete example,
banking sectors are typically highly consolidated — in the
UK, there are four banks that hold the majority of customer
accounts [80] — . Providing privacy for this “small” sets
can be meaningful for many clients.

Appendix C.
DCTLS Formal Description

The three phases (HSP, QP, CP) of a generic three-party
TLS (DCTLS) protocol are formally described (in terms of

15. Note that both oracle definitions assume the generation of a global set
of key pairs that are used during the security game, and a correspondingly
global set, R, of all valid verification keys.
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Algorithm 1 2PC-AES-GCM Encrypt
Require: k = kc + kv, IVc, IVv, {hi

c}i∈[n], {hi
v}i∈[n]

Require: C inputs a message M
Require: IVc and IVv must not have been supplied for

encryption previously.
Ensure: C learns ((C1, . . . , Cn), τ(A,C, k, IV )).
Ensure: V learns (C1, . . . , Cn).

if IVc ̸= IVv then
return Error ▷ The IVs must match.

end if
Parse M as M1∥ . . . ∥Mn ▷ Mi fits AES blocksize
C = (Ci ← AES.Enc(kc + kv, IVc + i)⊕Mi)i∈[n]
τc ← PA||C||len(A)||len(C)({hi

c})
τv ← PA||C||len(A)||len(C)({hi

v})
τ ← τc ⊕ τv ⊕ AES.Enc(kc + kv, IVc)
return (C, τ) to C
return C to V

their inputs and outputs) below.
• (pp, spC , spS , spV) ← DCTLS.HSP(1λ): The hand-

shake phase takes as input a security parameter, and
computes a TLS handshake between S, and an effective
client that consists of both C and V . The public/secret
parameters (pp, spS ) learnt by S are the same as in a
standard TLS handshake. The secret parameters learned
by C (spC) and V (spV ) are shares of the secret parame-
ters learnt by a standard TLS client [29], so that neither
party can compute encrypted traffic alone.

• (r, q̂, r̂)← DCTLS.QP(pp, spC , spS , spV , q): The query
phase takes the public and secret parameters of each
party as input, along with a query, q, that is to be sent
to S. This phase requires S to construct a response, r, to
q and return it to C. The phase outputs both q and r, and
also vectors of TLS ciphertexts (q̂ and r̂) that encrypt
the client queries and the server responses. q̂ and r̂
are vectors containing blocks of the TLS ciphertext
encrypting q and r, respectively.

• b ← DCTLS.CP(pp, spC , spV , q, r, q̂, r̂, (i, j)): The
commitment phase outputs a bit b, where b = 1 if C
constructs a valid opening of q̂i and r̂j with respect to
the unencrypted q and r. Broadly speaking, C sends to
V the TLS-encrypted ciphertexts, before V sends spV
to C, and then C opens the commitments. Note that a
valid opening could be proving in zero-knowledge that
r̂j encrypts a value in a given range, or using 2PC to
decrypt the block directly.

Appendix D.
Security of AES-GCM Optimisations

D.1. Secure 2PC Encryption & Decryption

2PC functionalities. We consider the 2PC functionalities
for encryption and decryption in 2PC-AES-GCM as given
in Algorithm 1 and Algorithm 2, respectively. Our ideal
functionality also covers the nonce uniqueness requirement

Algorithm 2 2PC-AES-GCM Decrypt
Require: k = kc + kv, IVc, IVv, {hi

c}i∈[n], {hi
v}i∈[n]

Require: C inputs a set of n masks {bi} and secret param-
eters sp for a computationally binding and perfect hiding
commitment scheme Γ′, and V inputs the corresponding
commitments {di} that were sent by C, generated using
Γ′, and ephemeral challenges {t′i}.

Require: C and V jointly input a set of ciphertext blocks
C1, . . . , Cn and a tag τ(A,C, k, IV ).

Require: IVc and IVv must not have been supplied for
encryption previously.

Ensure: C learns (M1, . . . ,Mn).
Ensure: V learns (E1, . . . , En).

if ∃ i s.t. 0← Γ′.Open(sp′, di, t
′
i, bi)

return Error ▷ Commitment checks failed.
end if then
if IVc ̸= IVv then

return Error ▷ The IVs must match.
end if
τ ′c ← PA||C||len(A)||len(C)({hi

c})
τ ′v ← PA||C||len(A)||len(C)({hi

v})
τ ′ = τ ′c ⊕ τ ′v ⊕ AES.Enc(kc + kv, IVc)
if τ ′ ̸= τ then

return Error ▷ Invalid tag
end if
(Mi = Ci ⊕ AES.Enc(kc + kv, IVc + i))i∈[n]
(Ei = AES.Enc(kc + kv, IVc + i)i ⊕ bi)i∈[n]
return (Mi)i∈[n] to C
return (Ei)i∈[n] to V

of AES-GCM. We note that in practice these additional
checks do not seem to affect the running time by much: for
example, our prototype garbled circuit implementation only
requires around 768 extra AND gates, representing around
a 10% increase over an AES circuit.
Security argument. We now argue the security of com-
puting encryptions and decryptions with respect to the ideal
functionalities described in Algorithm 6 and Algorithm 7.
We implicitly assume that 2PC evaluations of the polyno-
mial P and the AES functionality (using garbled circuits) are
secure with respect to malicious adversaries, and that AES-
GCM is a secure AEAD scheme. These security guarantees
are assumed in previous work [2, 18, 17], but are not made
explicit. We require them when proving that the query phase
of DiStefano is secure (Section E.2).

Lemma 9 (Malicious Client). 2PC-AES-GCM is secure in
the presence of a malicious adversary that controls C.

Proof. Let S be a PPT simulator for the encryption func-
tionality, that simply returns samples C ′ from the domain of
AES.Enc, and τc ←$ {0, 1}t, and returns (C, τc) to C. We
ultimately argue that the real-world outputs of 2PC-AES-
GCM are indistinguishable from this.

Let SAES be a simulator for the ideal 2PC evaluation of
AES.Enc, and let SP be a simulator for the ideal evaluation
of P . It first sends m to SAES and learns C = (C1, . . . , Cn).
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Then it sends C to SP (along with A) and learns τ . It
returns (C, τ) to C. To see that this is indistinguishable from
the real-world, we can trivially construct a hybrid argument
from the real-world protocol that relies on two steps, re-
placing real garbled circuit evaluation of each functionality
with ideal-world simulation, and argue security based on the
maliciously-secure 2PC garbled circuit approach that we use
(Section 3).

Finally, based on the assumption that AES is a pseudo-
random permutation, we can construct a final hybrid step,
that replaces AES.Enc with a random value in the domain.16

The case of decryption is much simpler since the client
only learns the message if they submit valid inputs to S (by
the AEAD security guarantees of AES-GCM). This can be
established using the same simulators SAES and SP defined
above.

Lemma 10 (Malicious Verifier). 2PC-AES-GCM is secure
in the presence of a malicious adversary that controls V .

Proof. The proof for a malicious V follows the same struc-
ture as in the case of C, but note that V is strictly less
powerful, because the V does not submit a message to be
encrypted.

We briefly note that PageSigner follows a slightly differ-
ent approach than this for computing tags: we decided not
to follow their approach, as a “back-of-an-envelope” calcu-
lation suggests that it is strictly slower than the aforemen-
tioned approach. We discuss this in more detail in Section F.

D.2. Commitment Scheme

We prove that the commitment scheme for AES-GCM
ciphertexts presented in Section 5.1 is a perfectly hiding and
computationally binding commitment scheme. Concretely,
this means showing that the 2PC’s Algorithm 2 produces
computationally binding and perfectly hiding commitments
Ei to ei = AES.Enc(k, IV + i). Since the primary applica-
tion of this work is to prove facts about traffic received from
the server, we focus on only the AES Decrypt algorithm.
If we wanted to prove facts about client-encrypted traffic,
Algorithm 1 would have to be updated to also include
commitments. As before, we implicitly assume that the 2PC
evaluations of the polynomial P and the AES functionality
are secure with respect to malicious adversaries.

First, let Γ′ be a perfectly hiding, and computationally
binding commitment scheme, generating commitments d ∈
{0, 1}λ for arbitrary x ∈ {0, 1}∗. Let K and X be the key
and ciphertext spaces for AES-GCM, respectively. Then, let
sp′ ← Γ′.Gen(1λ), and di = Γ′.Commit(sp′, bi) for some
bi ←$ X .

Lemma 11 (AES-GCM Commitment security). The al-
gorithm 2PC-AES-GCM Decrypt, when instantiated with
Γ′, produces computationally binding and perfectly hiding
commitments to decryptions of AES-GCM ciphertexts.

16. This only holds if the IV is a nonce, see [2, §B.2].

Proof. We first formally describe the AES-GCM commit-
ment (ΓAES) scheme for any of the ith message blocks,
using the following functionality (applying the framework
described in Section B.1).
• sp = (bi, kc), and assume that the receiver holds the

commitment di ← Γ′.Commit(sp′, bi).
• Ei ← ΓAES.Commit(sp,Mi): Runs the 2PC-AES-

GCM-Commit algorithm to generate commitments
(Ci, Ei = ei + bi), where Ci is the ith received ci-
phertext, and ei = AES.Enc(kc + kv, IVc + i).

• (kv, t
′
i) ← ΓAES.Challenge(Ci, Ei): reveals V’s key

share, kv, to the commitment sender, along with a
challenge t′i for Γ′.

• b̂ ←$ ΓAES.Open(sp, (Ci, Ei), kv,Mi): First, checks
that 1 ← Γ′.Open(sp′, di, t

′
i, bi). Then, computes bi ⊕

Ei to reveal ei, and then returns 1 iff M ′ ← Ci ⊕ ei
satisfies M ′ = Mi.

To argue perfect hiding, notice that bi is not revealed to
V during the execution of 2PC-AES-GCM-Commit. As Γ’
is a perfectly hiding commitment scheme, we may simply
replace bi with a uniformly random value ri in the range
of bi, which in turn makes Ei = ri ⊕ ei a one-time pad
encryption of ei. By the properties of the one-time pad, we
have that the scheme is therefore also a perfectly hiding
commitment to ei = AES.Enc(kc + kv, IV + i).

To argue computational binding, we first ensure that
the masks bi generated by the client are consistent with
their input to the 2PC-AES-GCM-Commit algorithm by ex-
plicitly checking that they correspond to the verifier-known
commitments. To argue security henceforth, we consider
two possible events. In the first event, we consider a PPT
adversary B′ that can generate valid openings of di to b′ ̸= bi
for Γ′. The advantage of B′ is clearly bounded by the
computational binding security of Γ′. In the second event,
we assume that no such B′ exists, and instead we consider a
PPT adversary B that finds M ′, such that M ′ = Ei⊕bi⊕Ci

for M ′ ̸= Mi. Since the only free variable in this equation
is ei = AES.Enc(kc + kv, IVc + i), this would require B
to find k′ ̸= kc ⊕ kv such that AES.Enc(k′, IVc + i) = ei.
Clearly, by the IND-CCA security of AES-GCM, finding
such a k′ ∈ K is computationally infeasible. Note that the
lack of key-committing security does not play a role here:
the adversary would need to freely manipulate the value of
ei to launch such an attack, which is impossible under the
assumption that bi is fixed.

Appendix E.
DCTLS Standalone Security Model

E.1. Handshake Phase Security

For establishing the security of the handshake phase,
we need to show that C (in cooperation with V) and S
establish a secure TLS 1.3 channel. To do this, we leverage
the handshake phase security analysis of Oblivious TLS [17,
Section 6], that is built upon the multi-stage key exchange
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Figure 7. Ordered execution of 2PC exchange between C and the V during
the handshake phase of DiStefano.
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model used to prove the standard handshake phase TLS 1.3
protocol [29]. The analysis of [29] follows the Bellare-
Rogaway (BR) framework [81] for establishing authenti-
cated key exchange security based on session key indistin-
guishability, and builds on the multistage model of Fischlin
and Günther [?, 82]. In summary, this model considers an
adversary that: interacts with several concurrent TLS 1.3
sessions between different endpoints (each of which has
its own identifier); can intercept, drop, and inject messages
between entities; can corrupt endpoints to learn their secret
parameters; and can request specific leakage of established
keys. The two core security properties that an adversary
is attempting to break are known as Match Security17 and
Multi-Stage Security.18

To prove the above security properties, the work of [17]
models C as a multi-party entity known as a TLS engine. The
differences in comparison with the standard model of [29]
are: (1) the handshake traffic keys are leaked to the multi-
stage adversary only when C is corrupted; (2) the MAC keys
used in CF and SF messages are leaked to the multi-stage
adversary upon reception of the corresponding messages;
(3) the IVs are leaked to the adversary; (4) the adversary
has the ability to make the engines abort; (5) the adversary
is able to shift the computed secret by an arbitrary scalar
Qϵ.

For DiStefano, one crucial difference in our approach
from the TLS engine model of [17] is in criterion (1):
we only reveal handshake traffic keys when the client is

17. That any two sessions with identical identifiers will agree on the
same key eventually.

18. That any tested key is indistinguishable from a random string of the
same length.

Algorithm 3 2PC-ECtF ideal functionality
Require: sskc = Y xc

s , sskv = Y zv
s

Ensure: Output shares tc to C, and tv to V of the x-
coordinate of Z = Y xc+zv

s

Algorithm 4 2PC-DeriveTKHS ideal functionality
Require: (tc, H0, H1) from C
Require: (tv) from V
Ensure: For each w ∈ {c, v}: return

(HSw,CHTSw,SHTSw,dHSw, tkwchs, tk
w
shs) to {C,V}

corrupted, and not when the verifier is. It’s worth recalling
that criterion (5) is permitted (as it is in [17]) since V
can arbitrarily influence the session secret by scalar mul-
tiplication. This means that the security of DiStefano is
likewise based on the Shifted PRF ODH assumption[83].
See [17, Definition 2] for more details. We also require (as
in [17]) the additional property that the adversary can only
test handshake keys if both C and V of a connection are
completely honest. Finally, we only allow the adversary to
corrupt a single party within any given session.

To summarise, the DiStefano security model essentially
provides the adversary with a subset of the capabilities of
the adversary in [17]. Note that a potential strengthening
of the security model could include the adversary learning
S’s identity when it corrupts C. However, such information
only becomes pertinent during the commitment phase, when
we later consider the case of a malicious V . Since we only
allow corruption of a single entity in a single session, we
do not consider this possibility during the handshake phase
of the protocol.
Applying this model to DiStefano. To use the model
defined above, we analyse the 2PC interaction between C
and V , and show that a corrupted client/verifier can only
learn details linked to criteria (1)–(5) above. Fig. 7 gives a
summary of the 2PC interactions between C and V , where
Algorithm 3, Algorithm 4, and Algorithm 5 give descriptions
of the ideal 2PC functionalities that are used.19 Our proof
is situated in the standard model.

Before any 2PC takes place, the client and the verifier
compute a shared value SSK = gxc+zv , where xc and zv are
the secrets of the respective participants. In this portion of
the execution, it is possible for either participant to shift the
session key by a certain scalar value, taken from the scalar
field associated with the group that is being used. Criterion
(5) captures this capability for an adversary, by allowing
them to shift the eventual shared secret by a scalar value
once they have corrupted one of the participants.

In each executed 2PC functionality, C and V can control
their inputs to each function, and produce a value that is
used in subsequent stages of the TLS protocol. By using
maliciously-secure 2PC garbled circuit protocols, we reduce
the “cheat-down” ability for either party to breaking any
of the individual primitives executed within the garbled cir-

19. See Fig. 2 for the full TLS derivation of each value.
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Algorithm 5 2PC-DeriveTKApp ideal functionality
Require: (dHSc) from C
Require: (dHSv) from V
Ensure: For w ∈ {c, v}: return (tkwcapp, tk

w
sapp) to {C,V}

cuits. Fortunately, each of these primitives is already proven
secure individually, and in a non-2PC TLS setting [29]. In
other words, using these primitives does not permit any
additional capabilities to an adversary that corrupts either
party.

Therefore, criteria (1)-(4) are explained in the following.
As noted in [17], V must reveal certain values (SHTSv

and CHTSv) to allow C to decrypt handshake traffic before
the application session keys are derived. As was shown
in [29], revealing this information after committing to
server-encrypted ciphertexts is safe, since the eventual ap-
plication traffic secrets are independent of the handshake-
encryption traffic keys. This protects against a malicious
client, but means that any adversary that corrupts C learns all
of the intermediate secrets that are used for encrypting and
decrypting traffic during the handshake. On the other hand, a
malicious verifier sending incorrect values will immediately
be discovered since C will no longer be able to decrypt any
traffic.

We can now finalise the security of the handshake into
the following theorem.

Theorem 12 (Security of handshake phase). The DiStefano
protocol is secure with respect to the ideal handshake phase
functionality (DCTLS.HSP), when assuming the following:

• a maliciously-secure 2PC-ECtF protocol;
• a maliciously-secure 2PC-DeriveTKHS protocol;
• a maliciously-secure 2PC-DeriveTKApp protocol;
• the hardness of the Shifted PRF ODH problem [17,

Definition 2];
• the underlying security of the TLS 1.3 protocol [29].

The proof of this theorem follows a standard hybrid
argument, where at each stage the 2PC protocol is replaced
with an ideal functionality that computes the same result.
Since each 2PC protocol is executed in sequence, this proof
argument follows in the standard model. Once the ideal
functionality is used, the rest of the security proof follows
from the same properties that guarantee security of the
underlying TLS 1.3 handshake protocol. A very similar se-
curity proof was given in [17] in the universal composability
framework.

As a consequence, the security of DiStefano is con-
firmed, based on the choices of 2PC protocols that are used.
The MPC primitives that we use and implement satisfy
malicious security, and are discussed formally in Section 3
and Section 4. Our experimental results in Section 7 detail
how performance changes depending on the choice of 2PC
primitives.

Algorithm 6 2PC-RL-Encrypt ideal functionality
Require: (tkccapp, q, AD) from C
Require: (tkvcapp, AD) from V

(q̂, τq̂)← AEAD .Enc(tkcapp, q;AD)
return Output (q̂, τq̂) to C
return Output q̂ to V

Algorithm 7 2PC-RL-Decrypt ideal functionality
Require: (tkcsapp, (̂r, τ̂r), AD) from C
Require: (tkvsapp) from V

return AEAD .Dec(tksapp, r̂, τ̂r;AD) to C

E.2. Query Phase Security

As in the handshake phase, while the server is left
untouched, we continue to consider the client and the verifier
as one that works together to encrypt and decrypt packets
to and from S. This is a requirement, since the end of the
handshake phase of a DCTLS protocol leaves the client and
verifier with shares of the secret session parameters, that
need to be combined in order to construct messages.

In effect, the query execution phase considers two
ideal functionalities: 2PC-RL-Encrypt (Algorithm 6), and
2PC-RL-Decrypt (Algorithm 7). In 2PC-RL-Encrypt, the
client and the verifier submit their secret parameters, and
the client submits a query (e.g. an HTTP request). The
ideal functionality returns an encryption of this query, un-
der a TLS 1.3-compliant AEAD scheme (Section B.2). In
2PC-RL-Decrypt, the client and the verifier submit the same
inputs, and the client submits a ciphertext received from the
server, and the ideal functionality returns the decryption of
this ciphertext under the same AEAD scheme, or ⊥ in the
event that the ciphertext does not decrypt properly.

We can show that the query phase of DiStefano is secure
when AEAD = AES-GCM, assuming the security of the
2PC-AES-GCM protocol (Section D.1). The proof that the
query phase of DiStefano satisfies security with respect to
the ideal DCTLS.QP functionality follows once we have
protocols that are secure with respect to 2PC-RL-Encrypt
and 2PC-RL-Decrypt. The proof that 2PC-AES-GCM sat-
isfies both follows almost immediately from Lemma 9 and
Lemma 10, due to the similarity between the ideal function-
ality for 2PC-RL-Encrypt (2PC-RL-Decrypt) and 2PC-AES-
GCM Encrypt (2PC-AES-GCM Decrypt). We state the full
theorem below for completeness.

Theorem 13. The DiStefano protocol is secure with respect
to the ideal query phase functionality (DCTLS.QP), when
assuming a maliciously-secure 2PC-AES-GCM protocol,
and the underlying security of the TLS 1.3 protocol [29].

E.3. Commitment Phase Security

For the commitment phase of DiStefano, we split the
requirement into a number of sub-properties: session privacy
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(SPriv), ring session authentication (SAuth1n), and session
unforgeability (SUnf). In each model, we first assume that
secure handshake and query phases have been computed,
using the ideal functionalities (DCTLS.HSP, DCTLS.QP)
(Section C). Recall that we only consider adversarial corrup-
tion of a single party in any situation, and, therefore, for any
post-handshake security game, we consider only handshake
phase corruptions concerning the same party.

In each of the security models (Fig. 8), we consider
a (potentially dishonest) C that starts by sending a com-
mitment, cq̂,̂r, to a specific session, S. In SPriv, the honest
client C constructs and sends a proof, σS,sid,L, that cq̂,̂r is
a commitment to a TLS session established with S ∈ L
(L is the set of accepted servers). The adversarial verifier,
AV , succeeds if it identifies the identity of S (it can point
which server in the set L that C is communicating with). In
SAuth1n, we consider an adversarial client, AC , where the
communication in the security game is the same, except
that AC succeeds if the commitment cq̂,̂r corresponds to
a session S established with a server S ′ /∈ L. Finally, in
SUnf, V reveals their secret session data to AC , and AC
succeeds if it can open cq̂,̂r to a different session S’. Overall,
we show that each of the properties follows, assuming a
sufficiently binding and hiding commitment scheme, and a
ZKPVS scheme for TLS certificates for showing that S ∈ L
(e.g. [59], see Section B.3).
Session privacy. For protecting the privacy of sessions
during the commitment phase, i.e. that the client commit-
ment does not reveal any information about the session to
a malicious V , we show that DiStefano satisfies security in
the SPriv security game (Fig. 8).

Lemma 14. Let Γ be a computationally hiding commitment
scheme for a DCTLS scheme, and let Π be a ZKPVS scheme
that satisfies anonymity for TLS certificates. Then, for all
PPT algorithms A, we have that:

AdvSPrivA,DCTLS,Γ(λ) < negl(λ).

Proof. We construct our proof of security as a two-step
hybrid proof. In the first step, Π is modified to always sign
using the secret key of server S0, regardless of the bit d.
In the second step, the commitment scheme is modified to
always commit to traffic exchanged with S0, regardless of
the choice of bit d. We can see that steps above can be
arbitrarily changed to always commit to traffic exchanged
with S1, therefore, we will speak only about the S0, without
loss of generality.

Note that once both hybrid steps have been executed,
the adversary AV has no advantage in guessing the bit d,
since they always receive session commitments and zero-
knowledge proofs of valid signatures for the traffic received
from a single server. Therefore, we simply have to show
that the real execution of SPriv is indistinguishable from
this case to show that DCTLS satisfies SPriv security.

The distinguishing probability between the two views
in the first hybrid step can be bounded by the anonymity

property of Π. In other words, if there is an adversary A that
distinguish between the two steps, then there is an adversary
B that can break the Anon security game of Π (Fig. 6). This
follows since, in the case when d = 1 the only difference is
the fact that σ is always computed over the certificate of S0.
Therefore, B can simply forward the message to be signed
during the TLS execution to their challenger, and receive
back the signature σ. Then, they can send this signature back
to A and output whatever A outputs. If A has non-negligible
advantage in distinguishing between the two steps, then so
will B.

The distinguishing probability between the two views
in the second hybrid step can be bounded by the fact that
the session commitment is generated only for S0. As such,
any adversary B against the computational hiding property
of Γ forward their challenge commitment to A in the same
as before, and win with the same advantage as A. This
completes the proof.

Ring authentication. We show that DiStefano ensures that
a malicious C must authenticate S to V , out of a set L
possible n accepted servers (where L is specified by V) using
the SAuth1n security game (Fig. 8).

Lemma 15. Let Π be a ZKPVS scheme that satisfies un-
forgeability for TLS certificates. Then, for all PPT algo-
rithms A, we have that:

Adv
SAuth1n
A,DCTLS,Π(λ) < negl(λ).

Proof. Suppose that C could win the SAuth1n game with
non-negligible advantage. Then, an adversary B that is at-
tempting to forge proofs for Π can simply output whatever
signature AC outputs as their answer to the Unf security
game (Fig. 6). If AC creates a valid forgery, then the
unforgeability of Π is violated.

Session unforgeability. We show that a malicious C cannot
open commitments to sessions that were not previously
committed to, by showing that DiStefano satisfies security
in the SUnf security game (Fig. 8).

Lemma 16. Let Γ be a perfectly binding commitment
scheme for a DCTLS scheme. Then, for all PPT algorithms
A, we have that:

AdvSPrivA,DCTLS,Γ(λ) < negl(λ).

Proof. It is clear to see that an adversary attempting to break
the perfect binding property of Γ can utilise the adversary
AV against SUnf to establish a valid opening based on an
uncommitted value.
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Figure 8. Security games for the commitment protocol.

SPriv

1 : L← AV(1λ, 1N )

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp0, sp0C , sp
0
S , sp

0
V)← DCTLS.HSP(1λ, C,S0,AV)

4 : (pp1, sp1C , sp
1
S , sp

1
V)← DCTLS.HSP(1λ, C,S1,AV)

5 : if [(S0 /∈ L) ∨ (S1 /∈ L)] : return 0

6 : d←$ {0, 1}
7 : q← AV(L)
8 : (q̂, r̂)← DCTLS.QP(ppd, spdC , sp

d
S , sp

d
V , q)

9 : σ ← Π.Sign(skΠ, pp
d, spdC , L)

10 : cd ← Γ.Commit(spdC , q̂, r̂)

11 : d′ ← AV({ppd, spdV}d∈{0,1}, vkΠ, q, c
d, σ, L)

12 : if [d′
?
= d] : return 1

13 : return 0

SAuth1n
1 : L← V(1λ, 1N )

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp, spC ,⊥, spV)← DCTLS.HSP(1λ,AC ,S,V)
4 : if [S ∈ L] : return 0

5 : σ ← AC(pp, spC , skΠ, vkΠ, L)
6 : return Π.Verify(vkΠ, pp, spV , σ, L)

SUnf

1 : (pp, spC , spS , spV)← DCTLS.HSP(1λ,AC,S,V)
2 : q← AC(1λ, pp, spC)
3 : (q̂, r̂)← DCTLS.QP(pp, spC , spS , spV , q)

4 : c← AC(spC , q̂, r̂)
5 : q′ ← AC(spC , spV , q, q̂, r̂, c)
6 : if [(Γ.Open(spV , q

′, c)) ∧ (q′ ̸= q)] : return 1

7 : return 0

Appendix F.
PageSigner and AES-GCM

In this section, we compare our approach to comput-
ing AES-GCM tags to the approach employed by Page-
Signer [12]. In a 2PC setting, we assume that both k and
the powers of h = hc + hv are additively shared by both
parties, with C, IV and A acting as public inputs.

Assuming that C is a single block without any associated
data (i.e. C = C1), we have τ = (hm−2

c + hm−2
v ) · (h1

c +
h1
v) ·C1 = (hm−1

c +hm−1
v +hm−2

c ·h1
v +hm−2

v ·hm−2
c ) ·C1.

As the first of these terms can be computed locally, the
cost of computing τ can be reduced to computing (hm−2

v ·
hc + hm−2

c · hv) ·C1 in 2PC. This approach can actually be
written as a variant of our approach, as the left hand-side
is fixed for a particular sharing of h. However, PageSigner
instead repeats this process each time a tag is computed.
Interestingly, it turns out that simply computing a sharing
of h2

vhc and h2
chv is sufficient to tag blocks of arbitrary

length, lowering the cost of tagging to just two OT-based
multiplications.

From a performance perspective, a “back-of-an-
envelope” calculation shows that this approach is strictly
less efficient than the one that we adopt in Section 5. Intu-
itively, this is because our approach allows all polynomial
evaluation to be done locally, even while both approaches
require computing an initial sharing of h and its powers,
PageSigner’s approach explicitly requires computing two
OT-based multiplications per tagging. Concretely, instan-
tiating these multiplications using the maliciously-secure
scheme presented in [56] with 128-bits of statistical security
would require 2048 oblivious transfers of 128-bits for the
multiplication alone, requiring around 32KiB of bandwidth
per tag. In contrast, our scheme only requires transferring
around 64 bytes per tagging operation. In other words, our

scheme requires around 500× less bandwidth per tagging
operation than the approach employed by PageSigner.

Appendix G.
Proofs Over Encrypted Data

DiStefano can be used to provide statements in zero
knowledge about encrypted data transmitted during a
TLS 1.3 session. Specifically, it can provide proofs that a
specific substring appears on said data which, in turn means,
that the confidentiality of the data remains and only what is
needed is revealed.

Revealing a substring. We briefly show how DiSte-
fano can implement two specific optimisations presented by
DECO: “Selective Opening”, which allows C to reveal that a
certain substring is present in a plaintext M , and “Selective
Redacting”, which allows C to reveal the entirety of M ,
other than some selection of omitted substrings.

Using our AES-GCM protocol, both approaches are
easily achievable. Suppose that C is committing to some
set of ciphertexts C1, . . . , Cn for the purpose of proving a
statement. Since C is required to commit to their additive
shares of the decryption keys kci before learning V ’s key
shares, selectively opening Ci simply requires revealing kci
to V . Similarly, C can selectively reveal any combination
of ciphertexts by simply revealing those individual keys.
In practice, revealing each block is rather cheap, requiring
only 128-bits of bandwidth. In addition, this scheme can
be adapted to deal with substrings inside a single block C:
rather than revealing kci directly, C and V instead decrypt
C in a garbled circuit with the output masked by ρ that
is chosen by C. We remark that this approach is somewhat
fragile: for any soundness to hold, we would also require that
C is only allowed to modify certain portions of the output
plaintext. We view this difficulty as orthogonal to this work:
this would require more extensive zero-knowledge proofs.
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Combining with server anonymity. Note that sub-
string revealing procedures may be at odds with the
anonymity property provided by the ZKPVS scheme. For
instance, if we take the example of proving a sufficient
bank balance, then different banks may encode the account
balance in different ciphertext blocks. Therefore, while the
ZKPVS scheme may hide which bank is used by the client,
the selective opening process may inadvertently leak the
identity of the bank by opening a specific ciphertext block.
Any implementation of attestations based on the DiStefano
framework must be cognizant of these discussions.

Appendix H.
Incompatibility With Garble-then-Prove

In this section we highlight why we have not incorpo-
rated the recent improvements presented in [14] into our
work. We stress that there are no fundamental incompat-
ibilities between DiStefano and the improvements made
by [14]; instead, the difficulties are solely implementation
driven. We consider producing a tool that allows us to
incorporate these changes to be a pressing, but orthogonal,
open problem.
An optimised 2PC-HMAC. We briefly recall the secret
derivation optimisation presented in [14]. For the purposes
of exposition we shall first show how to efficiently compute
the HMAC function in a 2PC setting before incorporating
this into TLS1.3 secret derivation.

Let H = SHA256 . Recall that the HMACSHA256 of a
variable length message m with a key k is

HMACH(k,m) = H((k ⊕ opad)||H((k ⊕ ipad)||m)).

From this we can see that naively computing HMACH in
2PC is likely to be expensive, as any generic circuit would
be required to compute the hash of m in 2PC. Given that the
cost of computing such a hash is proportional to the length
of m, such a circuit would likely perform poorly on long
messages.

This situation was considered in the context of
CBC-HMAC by [2]. In this setting, P and V wish to com-
pute the CBC-HMAC of a message m that is known entirely
by P under a shared key k. In order to implement this
functionality efficiently, the authors of [2] take advantage
of the underlying structure of SHA256. Namely, suppose
that m1 and m2 are two correctly sized blocks. Then

SHA256(m1,m2) = fH(fH(IV,m1),m2)

where IV is the initialisation vector and fH is the
compression function of SHA256. If we now return to the
HMAC computation, it is clear that the inner-most call is
fH(IV, k⊕ ipad). Given that fH is assumed to be a one way
function, revealing s0 = fH(IV, k ⊕ ipad) does not reveal
anything about k to either party; thus, we can realise HMAC
more efficiently by simply revealing s0 to P , allowing them
to compute the hash of m locally i.e outside of 2PC. This

means that the HMAC computation of an arbitrarily long
message only requires a few SHA256 calls in 2PC, rather
than potentially many when realising HMAC generically.

This idea was recently adapted to the context of TLS 1.2
secret derivation by the authors of [14]. Briefly, the authors
propose revealing the value s0 = fH(IV0,pms ⊕ ipad) to
both parties, allowing some of the fH calls to be realised
locally. In addition, the authors of [14] also propose re-using
previously garbled values across multiple circuits, allowing
even fewer fH calls to be carried out in 2PC. Concretely,
this optimisation reduces the number of needed fH calls in
2PC from 18 to only 6.

Implementation difficulties. We now highlight why this
approach seems difficult to realise in DiStefano. At a high-
level, the main issue is that our current garbled circuit
library (emp) does not support either accepting new input or
outputting partial values as the circuit runs. Indeed, if emp
were to support this feature, then realising the optimisation
presented would be easy. However, the fact that emp does
not support this feature means that we would have to realise
this optimisation by chaining multiple circuits together. In
this model, each circuit computes a sub-portion of the secret
derivation procedure and outputs some intermediate results
to each party.

On the one hand, this approach would allow each party
to locally compute some of the calls to fH , yielding the
claimed speed-ups. However, this would require each circuit
to either recompute any shared input, and to validate that
the same value of s0 is used across multiple circuits. In the
case of the former, we would need to recompute pms in each
individual circuit, and we would also need to check that the
same value of s0 is supplied by both parties. Put simply, this
decomposition would reduce some of the potential speed-
ups from [14]. Moreover, decomposing secret derivation into
multiple circuits would allow a malicious party to alter their
inputs at each stage, potentially causing selective failure.
Whilst we stress that we cannot see an obvious way to use
this to expose a vulnerability in the security of DiStefano,
it would contradict elements of the security model that we
consider.

Nonetheless, none of these reasons invalidate the ap-
proach taken in [14], and we believe that a similar idea
can be applied even with the current version of emp. For
example, notice that our secret derivation circuit recomputes
the compression function fH(HS⊕ipad) a total of three times
during secret derivation; re-using this value inside the same
circuit would be more efficient than our current approach.
A similar approach can also be applied to the derivation
of traffic secrets. However, we have not implemented this
approach, as we believe that it is unlikely to be competitive
with [14] in practice. Put differently, we believe that the
completion of a tool that allows for the [14] optimisation to
be realised securely inside DiStefano should be the priority
for future work.
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Appendix I.
Potential Attacks on Janus and DECO’s
TLS 1.3 Variant

In this section we present an attack on an interpretation
of the TLS 1.3 variant of DECO and the recently presented
Janus [15] TLS attestation mechanism. Notably, this attack
allows either a malicious client to produce false attestations,
or for a malicious proxy to fully decrypt all traffic. We stress
that our interpretation of DECO’s TLS 1.3 variant may be
different from exactly what the authors intended, due to
lack of specificity, and thus the attack presented may not
be directly applicable. However, the attack presented here
applies to any TLS attestation protocol that does not care-
fully handle the sharing (and disclosure) of traffic secrets.
The SF message. The attack presented in this section
exploits a flaw in how both Janus and DECO’s TLS 1.3
variant handle session authentication between the client and
the verifier. In order to explain this flaw, we briefly recall the
TLS 1.3 server authentication mechanism used in TLS 1.3
(see [29] for a more thorough explanation).

First, assume that S and C are establishing a TLS 1.3
session; and that S and C have exchanged both the hello
messages (ClientHello and CH) and derived authentic
copies of the handshake secrets SHTS and CHTS. At this
stage, §authenticates itself to C as follows:

1) To ensure authenticity, S sends its certificate SCRT to
C, followed by a signature on the hash of the session
transcript (SCV). Upon receipt of these messages, C
checks the certificate and uses the corresponding public
key to verify SCV. Notably, C is able to check SCV
because C has a full view of the transcript.

2) To ensure integrity, S uses SHTS to derive the finished
key fks. S then computes the server finished (SF)
message, by computing a HMAC on the hash of the
session transcript using fks. S then sends SF to C, who
locally validates SF by deriving their own fks. Again,
C is only able to check the SF because they have a full
and complete view of the transcript.

In the regular (i.e two-party) variant of TLS 1.3 this
approach has been shown to provide very high security
guarantees: the pioneering work of [29] have shown that
the TLS 1.3 handshake protocol establishes session keys
with strong security properties under standard cryptographic
assumptions. Interestingly, the TLS 1.3 handshake protocol
actually achieves a stronger level of security than may
be fully necessary in some settings. For example, it has
been argued that the SF message alone authenticates the
transcript [29], as the SF message is an authenticated HMAC
of the transcript sent so far. Put differently, the SCV message
does not provide any additional integrity guarantees for the
derived keying material compared to just checking the SF
message.
TLS 1.3 in DECO and potential avenues for attack. The
authors of [2] initially proposed using a variant of the above
idea to accelerate certificate checking in DECO’s TLS 1.3
variant. Namely, the authors of DECO suggest, as the traffic

keys are independent of the handshake keys, that the C and
V can simply derive all secrets in a single circuit, with
C alone learning all handshake keys for the purpose of
certificate checking. Whilst it is unclear that this approach
will work20, we note that the description given in DECO
does not specify whether V ever learns the SF or SCV
message in the TLS 1.3 version of DECO, or if C alone has
access to this information. We argue that this approach leads
to a very straightforward attack. Namely, suppose that C is a
malicious and wishes to falsely attest of data using a server
S. In this attack, C begins a three-party handshake with
V , and receives V’s keyshare for the three-party handshake.
Then, rather than contacting S and carrying out the usual
three-party handshake, C simply replies to V with its own
keyshare. Intuitively, this step is the same as establishing a
TLS 1.3 session between C and V without the involvement
of S. This step produces the following outcomes:

1) V , upon receipt of C’s keyshare, is unable to determine
whether it belongs to S or C, as it is unauthenticated
at this stage. Thus, V must assume that the keyshare is
a legitimate value from S.

2) On the other hand, C can now locally derive all hand-
shake and traffic secrets for the session, as C knows the
entirety of the shared handshake secret. Thus, C can
systematically deceive V in an undetectable manner.
Moreover, as V never learns the SF message (or even
the SCV message), V is unable to check if the handshake
transcript was valid. As such, if C indicates that the
checks passed, then V continues as if the transcript
was authentic.

At this stage, C can forge any TLS traffic between itself
and S, without V being able to detect the forgeries, leading
to false attestations. Moreover, this attack persists even if
V explicitly checks the SF message of the transcript: as the
transcript between V and C is a valid TLS 1.3 transcript,
the secret derivation process will produce valid secrets, and
checks on SF will pass.

Formally speaking, this attack arises from the fact that,
although V and C are treated as a singular entity from the
perspective of S, they are in fact very different entities.
Practically speaking, the main issue is that C obtains a
valid copy of the transcript, whereas V does not. Moreover,
ensuring that V receives any meaningful authenticity guaran-
tees in the face of a malicious adversary whilst respecting
privacy is somewhat difficult. Indeed, a trivial solution to
the aforementioned attack would be to simply require that
V learns the identity of S and the SCV value, allowing V to
authenticate S.
Attack vectors on the Janus protocol. We argue that
the recently proposed Janus [15] TLS attestation protocol is
potentially vulnerable to an attack with a similar root cause,
albeit with a different mechanism.

Briefly, the Janus protocol is a hybrid between DiS-
tefano and DECO’s proxy mode. In its presented config-

20. Given that deriving the traffic keys requires SF to be incorporated
into the transcript hash, it seems impossible that the application and traffic
secrets could be derived in one step.

26



uration, Janus treats the verifier as a TLS 1.3 proxy that
forwards (and records) all traffic between C and S. Notably,
the Janus protocol differs from DiStefano by using a set of
semi-honest garbled circuits for all secret derivation, other
than AES-GCM tagging and verification. In this model, the
adversary follows an agreed-upon protocol without devia-
tion. Instead, the primary aim of the adversary is to learn
the secret inputs of the honest party. Whilst this change is
primarily made for efficiency, the authors of Janus also claim
that the authenticity guarantees given by the SCV and SF
messages allows for this change to be made while ensuring
security against malicious adversaries.

In order to highlight a potential attack, we now briefly
describe the differences in secret derivation between Janus
and DiStefano. We note that the protocols are essentially
identical up until the secret derivation procedure, and thus
we omit these details.

1) C and V invoke a semi-honest garbled circuit protocol,
that outputs the SHTS value to C. C uses an authentic
copy of the transcript to check the SF and SCV mes-
sages. If the checks fail, then C aborts. Otherwise, C
reveals SHTS to V , and V repeats the same checks.

2) C and V repeat similarly for the CHTS circuit.
3) Finally, C and V derive the traffic secrets using a series

semi-honest garbled circuits. We note that, according
to Figure 4 of [15], the dHS secret appears to be
derived after the SHTS value has been checked. As
we shall soon explain, this is problematic when only
semi-honest garbled circuits are used.

We now present a potential attack using a malicious
adversary that is undetectable using semi-honest garbled
circuits. First, assume that V is a malicious verifier that
wishes to compromise the confidentiality of C. In order to
achieve this, V generates a public key Kv and establishes a
TLS session with S, recording the entire transcript T and
deriving all traffic secrets. Note that from the perspective of
S, V is behaving honestly, and thus S cannot mitigate this
attack. Then, when C begins the Janus protocol, V replays
the transcript T to C and maliciously garbles the SHTS
derivation circuit such that the SHTS from T is revealed. We
stress that this step requires V to be a malicious actor, as the
circuit would otherwise output a different SHTS due to the
keyshare input by C. At this stage, C will check the SF and
SCV messages and conclude that they are valid. V , hence, has
succeeded in their attack: V can simply ignore the request
for validation using the CHTS, and, as they also know all
other traffic secrets, V can undetectably decrypt or modify
any messages exchanged between S and C. Moreover, even
if V is unable to modify the SHTS check, it seems clear that
modifying the output of the dHS circuit to a known value is
enough to remove any security guarantees that Janus offers;
indeed, setting the dHS to some known value affords the
exact same powers to V in a manner that is undetectable to
C.

Attack intuition. All the aforementioned attacks rely on the
mismatch between the transcript seen by V and the transcript
seen by C. On the one hand, omitting certain information

from the view of V allows C to act in an arbitrarily powerful
fashion, providing no guarantees at all to C. Yet, we consider
the attack on Janus to be equally as serious; here, the
session guarantees expected by C simply fade away in an
undetectable manner, even though C may have access to a
full view of the transcript. In both cases, the attacks exist
simply because there is no concrete binding between the
transcript shown to C by V and the actual, underlying session
that is being carried out.

Mitigating these attacks appears fairly straightforward.
DiStefano avoids the attack on DECO’s TLS 1.3 variant
by simply requiring that C provides commitments to session
traffic as part of the authentication process. This, coupled
with a ZKPVS scheme attesting to the validity of the SCV
value, is enough to ensure that C cannot fool V without
a collaborating S. Moreover, the use of maliciously-secure
garbled circuit protocols is enough to prevent V from mod-
ifying the output of the SHTS derivation in a predictable or
useful fashion. Finally, we mention that a potential defence
against the attack described on Janus would be to simply
require that V proves that the value it sends in the client
handshake somehow involves the share provided by C. This
could be achieved by revealing both T = Kv + Kc and
Kv to C, which would allow C to ensure that its view of
the transcript is authentic relative to the current session.
However, we caution against the belief that this safeguard
alone is sufficient, as it is clear that any attack against
the derivation of dHS is sufficient to allow a malicious
adversary to break the security of the Janus protocol. We
leave clarifying the security properties of a DiStefano-like
protocol that uses semi-honest primitives for future work.

Appendix J.
Modifications in Implementation

We briefly list the changes introduced in our implemen-
tation. Recall that our implementation is over the BoringSSL
library, so, in order to enhance client-side functionality, set
and get functions have been developed for the key share
structure of it, accompanied by thorough testing to ensure
their reliability. Additionally, a “set verifier” function has
been introduced, allowing the client to establish the verifier
structure, which is also supported by rigorous testing.

Furthermore, a new namespace, called “ThreeParty-
Handshake”, has been created to facilitate communication
with a third party in generating shared key shares. Moreover,
a “key store” field has been integrated into the SSL structure
to securely store the local share of the three-party handshake
keys, thus preserving the state of the original key shares.
Utility functions have also been developed for extracting
the not identifier (NID) and converting constructed binary
blocks (CBB) to elliptic curve (EC) points. These enhance-
ments collectively contribute to a more robust and efficient
implementation of the key share structure and three-party
handshake protocol, facilitating secure communications in
cryptographic applications.
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Appendix K.
Glossary of Terms

We provide a list of common acronyms used below.
Note that acronyms used in the specification of DiStefano
in Fig. 2 are respectively defined in Section A.
2PC. Two-party computation.
AD. Associated Data.
AES. Advanced Encryption Standard.
AES-GCM. AES in Galois Counter Mode.
CBC. Cipher Block Chaining
CP. Commitment phase.
DCTLS. Designated-Commitment TLS.
ECDH. Elliptic Curve Diffie-Hellman.
ECtF. Elliptic Curve to Field operation.
HSP. Handshake phase.
MPC. Multi-party computation.
MtA. Multiplicative to Affine operation.
OT. Oblivious Transfer.
PRF. Pseudo-Random Function.
QP. Query phase.
RL. Record-layer protocol.
TLS. Transport Layer Security protocol.
ZKPoK. Zero Knowledge Proof of Knowledge.
ZKPVS. Zero Knowledge Proof of Valid Signature.
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