Combining K-Means and Optimization Algorithms for data clustering
Publish place: کنفرانس بین المللی مهندسی کامپیوتر و فناوری اطلاعات
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 657
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CITCOMP01_069
تاریخ نمایه سازی: 16 شهریور 1395
Abstract:
Data clustering is related to the split of a set of objects into smaller groups with common features. Several optimization techniques have been proposed to increase the performance of clustering algorithms. Swarm Intelligence algorithms are concerned with optimization problems and they have been successfully applied to different domains. In this work, a Swarm Clustering Algorithm is proposed based on the standard K-Means clustering algorithms, which are used as fitness functions for a Swarm Intelligence algorithm. The motivation is to exploit the search capability of Swarm Intelligence algorithms and to avoid the major limitation of falling into locally optimal values of the K-Means algorithm. Because of the inherent parallel nature of the Swarm Intelligence algorithms, since the fitness function can be evaluated for each individual in an isolated manner, we have developed the parallel implementation, comparing the performances with their algorithm. Experiments with 2 bench-mark datasets have shown similar or slightly better quality of the results compared to standard K-Means algorithm and other algorithm. There results of using proposed algorithm for clustering are promising
Keywords:
Authors
Mohammad Moazeni
Department of computer Architecture, Dezful Branch , Islamic Azad university, Dezful, Iran
Karim Ansari-Asl
Department of Electrical Engineer, Shahid Chamran University, Ahvaz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :