Reduce Data Anomalies Using Manifold Learning
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,081
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IPRIA01_155
تاریخ نمایه سازی: 11 مرداد 1393
Abstract:
Manifold learning has recently appeared as a powerful method for dimensionality reduction. Most studies and theoretical results in the field of this method have only focussedon preserves distances quite nicely; however, empirical results are sparse. In this paper we select the important features of dataand assignment rank for high value data and the penalty for low value data or similar data, then they insert into manifold learningalgorithm LSML. Next, the general method of dealing with bothnormal data and anomal data is discussed. If the anomalies occur on low value data, they are removing with dimantional reductionbut if anomalies occured on high value data to retrieve them .The propose Error function to be divided by the distance between thenormal data point and anomaly data point and add data penalty, it will help remove. The methode provides a way to map anumber of points in high dimensional spasce into a low dimentional space, with only smal distortion of the distancees between the points.
Keywords:
Authors
Hima Nikafshan Rad
College of Computer Science Tabari Institute of Higher Education Babol, Iran
Homayun Motameni
Department of Computer Engineering Islamic Azad University, sari Branch Sari, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :