AI-enabled Diagnostics and Monitoring in Nanomedicine
Publish place: Eurasian Journal of Science and Technology، Vol: 4، Issue: 3
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 88
This Paper With 22 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EJST-4-3_006
تاریخ نمایه سازی: 18 اردیبهشت 1403
Abstract:
This review article explores the transformative impact of AI in the field of nanomedicine, specifically focusing on AI-enabled diagnostics and monitoring. Nanomedicine has emerged as a promising approach for improving medical imaging, drug delivery, diagnostics, and therapy, and AI has become a disruptive force that enhances the precision, efficiency, and personalization of healthcare solutions. We delve into the role of AI in designing and optimizing nanomaterials, drug delivery systems, and combinatorial nanomedicine administration. AI's potential to examine vast datasets, discover patterns and predict behaviour in biological systems is discussed. The paper also highlights the vital role of AI-driven nanosensors in the real-time monitoring of biomarkers within the human body. Interdisciplinary collaboration in healthcare is emphasized, as it is essential for addressing complex challenges and achieving global health goals. The article concludes by exploring how AI has revolutionized surgical planning, anatomical modelling, and virtual anatomy education in the context of nanomedicine. Overall, this review demonstrates the significant potential of AI-enabled diagnostics and monitoring in nanomedicine to revolutionize healthcare.
Keywords:
Authors
Odii Egwuatu
Department of Anatomy, Ebonyi State University, Abakaliki, Nigeria
Merit Ori
Department of Microbiology, Federal University of Technology Owerri, Imo State, , Nigeria
Humphrey Samuel
Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria
Francis-Dominic Ekpan
Department of Biotechnology, Federal University of Technology Owerri, Nigeria
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :