[go: up one dir, main page]
More Web Proxy on the site http://driver.im/Jump to content

Borate phosphate

From Wikipedia, the free encyclopedia
Borate phosphate
Identifiers
3D model (JSmol)
ChemSpider
  • 1:1: InChI=1S/BO3.H3O4P/c2-1(3)4;1-5(2,3)4/h;(H3,1,2,3,4)/q-3;/p-3
    Key: IVHMVLWSSMPWPQ-UHFFFAOYSA-K
  • 1:1: B([O-])([O-])[O-].[O-]P(=O)([O-])[O-]
Properties
BO7P−6
Molar mass 153.78 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.[1]

There are also organic esters of both borate and phosphate, e.g. NADH-borate.[2]

Production

[edit]

In the high temperature method, ingredients are heated together at atmospheric pressure. Products are anhydrous, and production or borophosphates is likely.[3]

The boron flux method involves dissolving ingredients such as an ammonium phosphate and metal carbonate in an excess of molten boric acid.[3]

Use

[edit]

Borate phosphates are of research interest for their optical, electrooptical or magnetic properties.[3]

List

[edit]
chem mw crystal system space group unit cell Å volume density comment references
Be3(BO3)(PO4) hexagonal SHG [1][4]
α-Mg3[BPO7] orthorhombic Immm a=8·495, b=4·886, c=12·565 Z=4 [5]
Mg3[BPO7] monoclinic Cm [3]
Mg3[BPO7] hexagonal P6_2m [3]
Lüneburgite Mg3[B2(OH)6](PO4)2 · 6H2O triclinic 2.05 Biaxial (-) nα = 1.520 – 1.522 nβ = 1.540 – 1.541 nγ = 1.545 – 1.548

2V 52° to 60°

Max birefringence δ = 0.025 – 0.026

[6][7]
Ca3[BPO7] monoclinic a=8.602 b=4.891 c=12.806 β=102.30 [5]
Seamanite Mn2+3[B(OH)4](PO4)(OH)2 orthorhombic Pbnm a = 7.81 Å, b = 15.11 Å, c = 6.69 Å Z=4 789.48 3.08 Biaxial (+) nα = 1.640 nβ = 1.663 nγ = 1.665

2V 40°

Max birefringence δ = 0.025

[8][9]
Laptevite-(Ce) Ca6(Fe2+,Mn2+)Y3REE7(SiO4)3(PO4)(B3Si3O18)(BO3)F11 trigonal R3m a = 10.804, c = 27.726 Z=3 2802.6 4.61 Uniaxial (-) nω = 1.741 nε = 1.720

Max birefringence δ = 0.021

[10]
(CoPO4)4, B5O6(OH)4N(CH3)4(CH3NH3) 1036.10 orthorhombic I222 a=6.7601 b=7.5422 c=34.822 Z=2 1775.4 1.938 red [11]
Co3[BPO7] monoclinic Cm a=9.774, b=12.688, c=4.9057, β=119.749°; Z=4 528.2 purple [3]
α-Zn3[BPO7] 349.89 orthorhombic a=8.438 b=4.884 c=12.558 [5]
α-Zn3[BPO7] 349.89 monoclinic Cm a=9.725 b=12.720 c=4.874 β=119.80 Z=4 [3][12]
β-Zn3[BPO7] 349.89 hexagonal P-6 a=8.4624 c=13.0690 Z=6 810.51 4.301 colourless [3][13]
α-Sr3[BPO7] orthorhombic a=9.0561, b=9.7984, c=13.9531 [14]
Sr10[(PO4)5.5(BO4)0.5](BO2) P3_ a=9.7973, c=7.3056, Z=1 607.29 [15]
SrCo2(BO3)(PO4) 359.26 monoclinic P21/c a=6.485 b=9.270 c=10.066 β=111.14 Z=4 548.7 4.349 red [1][16]
Byzantievite Ba5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO4, SiO4)]4(BO3)9O22[(OH),F]43(H2O)1.5 trigonal R3 a = 9.1202, c = 102.145 7,357.9 4.10 Uniaxial (-) nω = 1.940 nε = 1.860

Max birefringence δ = 0.080

16 different layers in structure

[17][18]
Rhabdoborite Mg12(V5+,Mo6+,W6+)1 · 5O6{[BO3]6-x[(P,As)O4]xF2-x} (x < 1) hexagonal P63 a = 10.6314, c = 4.5661 446.95 [19]
CsNa2Y2(BO3)(PO4)2 605.46 orthorhombic Cmcm a=6.9491 b=14.907 c=10.6201 Z=4 1100.2 3.655 colourless [20]
CsZn4(BO3)(PO4)2 679.30 orthorhombic Pbca a=14.49 b=10.02 c=16.45 Z=8 2388 3.779 colourless [21]
Ba3(BO3)(PO4) hexagonal P63mc a=5.4898, c=14.7551, Z=2 [1][22]
Ba3(BO3)(PO4) monoclinic P2/m a = 11.7947, b = 9.6135, c = 12.9548, β= 111.25° 1369.08 [23]
Ba11B26O44(PO4)2(OH)6 monoclinic P21/c a=6.891, b=13.629, c=25.851, β=90.04° [24]
Ba3(ZnB5O10)PO4 786.41 orthorhombic Pnm21 a = 10.399 b = 7.064 c = 8.204 Z=2 602.6 4.334 [25]
La7O6(BO3)(PO4)2 monoclinic a=7.019 b=17.915 c=12.653 β=97.52 1577.27 [1][26]
Pr7O6(BO3)(PO4)2 monoclinic P121/n1 a=6.8939 b=17.662 c=12.442 β=97.24 Z=4 1502.9 green [1][27]
Nd7O6(BO3)(PO4)2 monoclinic a=6.862 b=17.591 c=12.375 β=97.18 1482.12 [1][26]
Sm7O6(BO3)(PO4)2 monoclinic P121/n1 a=6.778 b=17.396 c=12.218 β=96.96 Z=4 1430.0 yellow [1][27]
CsNa2Sm2(BO3)(PO4)2 728.34 orthorhombic Cmcm a=7.0631 b=15.288 c=10.725 Z=4 1158.1 4.177 colourless [28]
CsNa2Ho2(BO3)(PO4)2 [29]
CsNa2Er2(BO3)(PO4)2 [29]
CsNa2Tm2(BO3)(PO4)2 [29]
Gd7O6(BO3)(PO4)2 monoclinic a=6.704 b=17.299 c=12.100 β=96.94 1393.11 [1][26]
Dy7O6(BO3)(PO4)2 monoclinic a=6.623 b=17.172 c=11.960 β=96.76 1350.84 [1][26]
K3Yb[OB(OH)2]2[HOPO3]2 R3_ a=5.6809, c=36.594 Z=3 1022.8 [1][30]
CsNa2Yb2(BO3)(PO4)2 [29]
K3Lu[OB(OH)2]2[HOPO3]2 R3_ a=5.6668, c=36.692 Z=3 1020.4 [1][30]
CsNa2Lu2(BO3)(PO4)2 777.58 orthorhombic Cmcm a = 6.8750 b = 14.6919 c = 10.5581 1066.44 4.843
Pb4O(BO3)(PO4) 998.54 monoclinic P21/c a=10.202 b=7.005 c=12.92 β=113.057 Z=4 849.6 7.807 colourless [31]
LiPb4(BO3)(PO4)2 1084.85 orthorhombic Pbca a=12.613 b=6.551 c=25.63 Z=8 2095 6.875 colourless [1]
Bi4O3(BO3)(PO4) 1037.70 orthorhombic Pbca a=5.536 b=14.10 c=22.62 Z=8 1766 7.807 colourless [31]
Th2[BO4][PO4] monoclinic P21/c a=8.4665, b=7.9552, c=8.2297, β= 103.746° Z = 4 [32]
Ba5[(UO2)(PO4)3(B5O9)]·nH2O interlocking nanotubes; absorbs water from air [33]
U2[BO4][PO4] 645.84 monoclinic P21/c a = 8.546, b = 7.753, c = 8.163 β = 102.52° Z=4 528.0 8.12 generated at 12.5 GPa + 1000 °C; emerald green [34]
[Sr8(PO4)2][(UO2)(PO4)2(B5O9)2] 1746.97 monoclinic P21/n a = 6.5014, b =22.4302, c =9.7964 β = 90.241° Z=2 1428.57 4.061 orange [35]

References

[edit]
  1. ^ a b c d e f g h i j k l m Huang, Shengshi; Yu, Hongwei; Han, Jian; Pan, Shilie; Jing, Qun; Wang, Ying; Dong, Lingyun; Wu, Hongping; Yang, Zhihua; Wang, Xian (August 2014). "The Effect of the Ratio of [M/(B+P)] on the Configuration of Anionic Groups: Synthesis of the Borate-Phosphate LiPb 4 (BO 3 )(PO 4 ) 2". European Journal of Inorganic Chemistry. 2014 (22): 3467–3473. doi:10.1002/ejic.201402389.
  2. ^ Kim, Danny H.; Marbois, Beth N.; Faull, Kym F.; Eckhert, Curtis D. (June 2003). "Esterification of borate with NAD+ and NADH as studied by electrospray ionization mass spectrometry and11B NMR spectroscopy". Journal of Mass Spectrometry. 38 (6): 632–640. Bibcode:2003JMSp...38..632K. doi:10.1002/jms.476. PMID 12827632.
  3. ^ a b c d e f g h Yilmaz, Aysen; Bu, Xianhui; Kizilyalli, Meral; Kniep, Rudiger; Stucky, Galen D. (February 2001). "Cobalt Borate Phosphate, Co3[BPO7], Synthesis and Characterization". Journal of Solid State Chemistry. 156 (2): 281–285. Bibcode:2001JSSCh.156..281Y. doi:10.1006/jssc.2000.8963.
  4. ^ He, Zhangzhen; Moriyama, Hiroshi (2003). "A Model of New VUV NLO Materials Based on Borate: A Novel Noncentrosymmetric Borophosphate Compound Be 3 BPO 7". MRS Proceedings. 788: L8.23. doi:10.1557/PROC-788-L8.23. ISSN 0272-9172.
  5. ^ a b c Gözel, G.; Baykal, A.; Kizilyalli, M.; Kniep, R. (December 1998). "Solid-State Synthesis, X-ray Powder Investigation and IR Study of α-Mg3[BPO7]". Journal of the European Ceramic Society. 18 (14): 2241–2246. doi:10.1016/S0955-2219(98)00152-6.
  6. ^ "Lüneburgite". www.mindat.org. Retrieved 2020-12-15.
  7. ^ Korybska-Sadło, Iwona; Sitarz, Maciej; Król, Magdalena; Gunia, Piotr (2016-10-20). "Vibrational spectroscopic characterization of the magnesium borate-phosphate mineral lüneburgite". Spectroscopy Letters. 49 (9): 606–612. Bibcode:2016SpecL..49..606K. doi:10.1080/00387010.2016.1236819. ISSN 0038-7010. S2CID 99999165.
  8. ^ "Seamanite". www.mindat.org. Retrieved 2020-12-15.
  9. ^ Ewald, Bastian; Huang, Ya-Xi; Kniep, Rüdiger (August 2007). "Structural Chemistry of Borophosphates, Metalloborophosphates, and Related Compounds". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (10): 1517–1540. doi:10.1002/zaac.200700232.
  10. ^ "Laptevite-(Ce)". www.mindat.org. Retrieved 2020-12-15.
  11. ^ Lin, Zhuojia; Wragg, David S.; Lightfoot, Philip; Morris, Russell E. (2009). "A novel non-centrosymmetric metallophosphate-borate compound via ionothermal synthesis". Dalton Transactions (27): 5287–9. doi:10.1039/b904450g. ISSN 1477-9226. PMID 19565080.
  12. ^ Bluhm, K.; Park, C. H. (1997-01-01). "Die Synthese und Kristallstruktur des Borat-Phosphats: α -Zn3(BO3)(PO4) / Synthesis and Crystal Structure of the Borate-Phosphate: α-Zn3(BO3)( PO4)". Zeitschrift für Naturforschung B. 52 (1): 102–106. doi:10.1515/znb-1997-0120. ISSN 1865-7117. S2CID 100783759.
  13. ^ Zhang, Erpan; Zhao, Sangen; Zhang, Jianxiu; Fu, Peizhen; Yao, Jiyong (2011-01-15). "The β-modification of trizinc borate phosphate, Zn 3 (BO 3 )(PO 4 )". Acta Crystallographica Section E. 67 (1): i3. Bibcode:2011AcCrE..67I...3Z. doi:10.1107/S1600536810051871. ISSN 1600-5368. PMC 3050272. PMID 21522511.
  14. ^ Tekin, Berna (August 2007). "Bazi Metal İçeren Boratli, Fosfatli ve Borfosfatli Bi̇leşi̇kleri̇n Sentezi̇ ve Yapisal Karakteri̇zasyonu" (PDF).
  15. ^ Chen, Shuang; Hoffmann, Stefan; Carrillo-Cabrera, Wilder; Akselrud, Lev G.; Prots, Yurii; Schwarz, Ulrich; Zhao, Jing-Tai; Kniep, Rüdiger (March 2010). "Sr10[(PO4)5.5(BO4)0.5](BO2): Growth and crystal structure of a strontium phosphate orthoborate metaborate closely related to the apatite-type crystal structure". Journal of Solid State Chemistry. 183 (3): 658–661. Bibcode:2010JSSCh.183..658C. doi:10.1016/j.jssc.2009.12.026.
  16. ^ Gou, Wenbin; He, Zhangzhen; Yang, Ming; Zhang, Weilong; Cheng, Wendan (2013-03-04). "Synthesis and Magnetic Properties of a New Borophosphate SrCo 2 BPO 7 with a Four-Column Ribbon Structure". Inorganic Chemistry. 52 (5): 2492–2496. doi:10.1021/ic3023979. ISSN 0020-1669. PMID 23406089.
  17. ^ "Byzantievite". www.mindat.org. Retrieved 2020-12-15.
  18. ^ Sokolova, E.; Hawthorne, F. C.; Pautov, L. A.; Agakhanov, A. A. (April 2010). "Byzantievite, Ba 5 (Ca, REE ,Y) 22 (Ti,Nb) 18 (SiO 4 ) 4 [(PO 4 ),(SiO 4 )] 4 (BO 3 ) 9 O 21 [(OH),F] 43 (H 2 O) 1.5 : the crystal structure and crystal chemistry of the only known mineral with the oxyanions (BO 3 ), (SiO 4 ) and (PO 4 )". Mineralogical Magazine. 74 (2): 285–308. Bibcode:2010MinM...74..285S. doi:10.1180/minmag.2010.074.2.285. ISSN 0026-461X. S2CID 95182192.
  19. ^ "Rhabdoborite-(V)". www.mindat.org. Retrieved 2020-12-15.
  20. ^ Zhao, Dan; Xue, Yali; Zhang, Ruijuan; Fan, Yanping; Liu, Baozhong; Li, Yanan; Zhang, Shirui (2020). "Design, synthesis, crystal structure and luminescent properties introduced by Eu 3+ of a new type of rare-earth borophosphate CsNa 2 REE 2 (BO 3 )(PO 4 ) 2 (REE = Y, Gd)". Dalton Transactions. 49 (29): 10104–10113. doi:10.1039/D0DT00389A. ISSN 1477-9226. PMID 32662492. S2CID 220519447.
  21. ^ Guo, Fengjiao; Hu, Cong; Wang, Ying; Han, Jian; Yang, Zhihua; Pan, Shilie (2018). "Insights of BO 3 –PO 4 replacement for the design and synthesis of a new borate–phosphate with unique 1∞[Zn 4 BO 11 ] chains and two new phosphates". Inorganic Chemistry Frontiers. 5 (2): 327–334. doi:10.1039/C7QI00548B. ISSN 2052-1553.
  22. ^ Ma, H.W.; Liang, J.K.; Wu, L.; Liu, G.Y.; Rao, G.H.; Chen, X.L. (October 2004). "Ab initio structure determination of new compound Ba3(BO3)(PO4)". Journal of Solid State Chemistry. 177 (10): 3454–3459. Bibcode:2004JSSCh.177.3454M. doi:10.1016/j.jssc.2003.12.027.
  23. ^ Gözel, Güller (1993). "Preparation and structural investigation of alkaline-earth metal borophosphates – Tez Arşivi". tezarsivi.com. Retrieved 2021-03-01.
  24. ^ Heyward, Carla; McMillen, Colin D.; Kolis, Joseph (July 2013). "Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16". Journal of Solid State Chemistry. 203: 166–173. Bibcode:2013JSSCh.203..166H. doi:10.1016/j.jssc.2013.04.022.
  25. ^ Yu, Hongwei; Zhang, Weiguo; Young, Joshua; Rondinelli, James M.; Halasyamani, P. Shiv (December 2015). "Design and Synthesis of the Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material Ba 3 (ZnB 5 O 10 )PO 4". Advanced Materials. 27 (45): 7380–7385. Bibcode:2015AdM....27.7380Y. doi:10.1002/adma.201503951. PMID 26459262. S2CID 35637169.
  26. ^ a b c d Shi, Ying; Liang, Jingkui; Zhang, Hao; Yang, Jinling; Zhuang, Weidong; Rao, Guanghui (February 1997). "X-Ray Powder Diffraction and Vibrational Spectra Studies of Rare Earth Borophosphates,Ln7O6(BO3)(PO4)2(Ln=La, Nd, Gd, and Dy)". Journal of Solid State Chemistry. 129 (1): 45–52. Bibcode:1997JSSCh.129...45S. doi:10.1006/jssc.1996.7227.
  27. ^ a b Ewald, B.; Prots, Yu.; Kniep, R. (April 2004). "Refinement of the crystal structures of praseodymium- and samariumoxoborate- bis(oxophosphate)-oxide, Ln7O6[BO3][PO4]2, (Ln = Pr, Sm)". Zeitschrift für Kristallographie – New Crystal Structures. 219 (1–4): 233–235. doi:10.1524/ncrs.2004.219.14.233. ISSN 2197-4578. S2CID 96530323.
  28. ^ Zhao, Dan; Shi, Lin-Ying; Zhang, Rui-Juan; Xue, Ya-Li (2020-12-01). "Synthesis, crystal structure and luminescence properties of a new samarium borate phosphate, CsNa 2 Sm 2 (BO 3 )(PO 4 ) 2". Acta Crystallographica Section C: Structural Chemistry. 76 (12): 1068–1075. doi:10.1107/S2053229620014576. ISSN 2053-2296. PMID 33273144. S2CID 227283126.
  29. ^ a b c d Zhao, Dan; Xue, Ya-Li; Fan, Yun-Chang; Zhang, Rui-Juan; Zhang, Shi-Rui (June 2021). "A new series of rare-earth borate-phosphate family CsNa2Ln2(BO3)(PO4)2 (Ln = Ho, Er, Tm, Yb): Tunnel structure, upconversion luminescence and optical thermometry properties". Journal of Alloys and Compounds. 866: 158801. doi:10.1016/j.jallcom.2021.158801. S2CID 233561777.
  30. ^ a b Zhou, Yan; Hoffmann, Stefan; Huang, Ya-Xi; Prots, Yurii; Schnelle, Walter; Menezes, Prashanth W.; Carrillo-Cabrera, Wilder; Sichelschmidt, Jörg; Mi, Jin-Xiao; Kniep, Rüdiger (June 2011). "K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu): Layered rare-earth dihydrogen borate monohydrogen phosphates". Journal of Solid State Chemistry. 184 (6): 1517–1522. Bibcode:2011JSSCh.184.1517Z. doi:10.1016/j.jssc.2011.04.023.
  31. ^ a b Wang, Ying; Pan, Shilie; Huang, Shengshi; Dong, Lingyun; Zhang, Min; Han, Shujuan; Wang, Xian (2014). "Structural insights for the design of new borate–phosphates: synthesis, crystal structure and optical properties of Pb 4 O(BO 3 )(PO 4 ) and Bi 4 O 3 (BO 3 )(PO 4 )". Dalton Trans. 43 (34): 12886–12893. doi:10.1039/C4DT01199F. ISSN 1477-9226. PMID 25020047.
  32. ^ Lipp, C.; Burns, P. C. (2011-10-01). "Th2[BO4][PO4]: A RARE EXAMPLE OF AN ACTINIDE BORATE-PHOSPHATE". The Canadian Mineralogist. 49 (5): 1211–1220. Bibcode:2011CaMin..49.1211L. doi:10.3749/canmin.49.5.1211. ISSN 0008-4476.
  33. ^ Wu, Shijun; Wang, Shuao; Diwu, Juan; Depmeier, Wulf; Malcherek, Thomas; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E. (2012). "Complex clover cross-sectioned nanotubules exist in the structure of the first uranium borate phosphate". Chemical Communications. 48 (29): 3479–81. doi:10.1039/c2cc17517g. ISSN 1359-7345. PMID 22267020.
  34. ^ Hinteregger, Ernst; Wurst, Klaus; Perfler, Lukas; Kraus, Florian; Huppertz, Hubert (2013-10-14). "High-Pressure Synthesis and Characterization of the Actinide Borate Phosphate U 2 [BO 4 ][PO 4 ]: High-Pressure Synthesis and Characterization of U 2 [BO 4 ][PO 4 ]". European Journal of Inorganic Chemistry. 2013 (30): 5247–5252. doi:10.1002/ejic.201300662. PMC 3939824. PMID 24611029.
  35. ^ Hao, Yucheng (2017). "New Insight into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-phosphates". p. 109.