The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Collection and Variables
2.3. Ethics and Consent Form
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- COVID-19 Situation Update Worldwide, as of 17 July 2020 n.d. Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 18 July 2020).
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—Covid-net, 14 states, March 1–30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Characteristics of COVID-19 Patients Dying in Italy n.d. Available online: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-analysis-of-deaths (accessed on 10 June 2020).
- Napoli, C.; Tritto, I.; Mansueto, G.; Coscioni, E.; Ambrosio, G. Immunosenescence exacerbates the COVID-19. Arch Gerontol. Geriatr. 2020, 90, 104–174. [Google Scholar] [CrossRef]
- Mueller, A.L.; Mcnamara, M.S.; Sinclair, D.A. Why Does COVID-19 Disproportionately Affect the Elderly? Available online: https://www.preprints.org/manuscript/202004.0548/v1 (accessed on 30 April 2020).
- Pera, A.; Campos, C.; López, N.; Hassouneh, F.; Alonso, C.; Tarazona, R.; Solana, R. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas 2015, 82, 50–55. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; Belongia, E.A. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet. Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Jefferson, T.; Rivetti, D.; Rivetti, A.; Rudin, M.; Di Pietrantonj, C.; Demicheli, V. Efficacy and effectiveness of influenza vaccines in elderly people: A systematic review. Lancet. 2005, 366, 1165–1174. [Google Scholar] [CrossRef]
- Pawelec, G.; Weng, N.P. Can an effective sars-cov-2 vaccine be developed for the older population? Immun. Ageing. 2020, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benn, C.S.; Netea, M.G.; Selin, L.K.; Aaby, P. A small Jab—a big effect: Nonspecific immunomodulation by vaccines. Trends. Immunol. 2013, 34, 431–439. [Google Scholar] [CrossRef] [PubMed]
- de Bree, L.C.J.; Koeken, V.A.C.M.; Joosten, L.A.B.; Aaby, P.; Benn, C.S.; van Crevel, R.; Netea, M.G. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018, 39, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Vojtek, I.; Buchy, P.; Doherty, T.M.; Hoet, B. Would immunization be the same without cross-reactivity? Vaccine 2019, 37, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Huber, V.C. The unexpected impact of vaccines on secondary bacterial infections following influenza. Viral. Immunol. 2018, 31, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Zanettini, C.; Omar, M.; Dinalankara, W.; Imada, E.L.; Colantuoni, E.; Parmigiani, G.; Marchionni, L. Influenza Vaccination and COVID19 Mortality in the USA. MedRxiv 2020. [Google Scholar] [CrossRef]
- Fink, G.; Orlova-Fink, N.; Schindler, T.; Grisi, S.; Ferrer, A.P.; Daubenberger, C.; Brentani, A. Inactivated trivalent influenza vaccine is associated with lower mortality among Covid-19 patients in Brazil. MedRxiv 2020. [Google Scholar] [CrossRef]
- Marín-Hernández, D.; Schwartz, R.E.; Nixon, D.F. Epidemiological evidence for association between higher influenza vaccine uptake in the elderly and lower COVID-19 deaths in Italy. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Jehi, L.; Ji, X.; Milinovich, A.; Erzurum, S.; Merlino, A.; Gordon, S.; Young, J.B.; Kattan, M.W. Development and validation of a model for individualized prediction of hospitalization risk in 4536 patients with COVID-19. PLoS ONE 2020, 15, e0237419. [Google Scholar] [CrossRef]
- Grech, V.; Borg, M. Influenza vaccination in the COVID-19 era. Early. Hum. Dev. 2020, 148, 105–116. [Google Scholar] [CrossRef]
- Gostin, L.O.; Salmon, D.A. The dual epidemics of covid-19 and influenza: Vaccine acceptance, coverage, and mandates. JAMA 2020, 324, 335–336. [Google Scholar] [CrossRef]
- Adorni, F.; Prinelli, F.; Bianchi, F.; Giacomelli, A.; Pagani, G.; Bernacchia, D.; Rusconi, S.; Maggi, S.; Trevisan, C.; Noale, M.; et al. Self-reported symptoms of SARS-CoV-2 infection in a non-hospitalized population: Results from the large Italian web-based EPICOVID19 cross-sectional survey. JMIR Public Health Surveill. 2020. [Google Scholar] [CrossRef]
- COVID-19 Scheda Regioni, n.d. Available online: https://github.com/pcm-dpc/COVID-19/blob/master/summary-sheets/regions/dpc-covid19-eng-regions-sheet-latest.pdf (accessed on 9 July 2020).
- General Data Protection Regulation—GDPR, n.d. Available online: https://gdpr-info.eu/ (accessed on 9 July 2020).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA.
- ISTAT. Popolazione Residente al 1° Gennaio 2019 per Età, Sesso e Stato Civile-ITALIA n.d. Available online: http://demo.istat.it/pop2019/index.html (accessed on 9 July 2020).
- ISTAT. Popolazione 15 Anni e Oltre per Titolo di Studio n.d. Available online: http://dati.istat.it/Index.aspx?QueryId=26175 (accessed on 9 July 2020).
- Italian Ministry of Health. Vaccinazione antinfluenzale in Italia: Coperture Vaccinali Nella Popolazione Generale n.d. Available online: http://www.salute.gov.it/imgs/C_17_tavole_19_allegati_iitemAllegati_0_fileAllegati_itemFile_3_file.pdf (accessed on 9 July 2020).
- Istituto Superiore di Sanità. Dati E Evidenze Disponibili Per L’utilizzo Dei Vaccini Anti-Pneumococcici Nei Soggetti A Rischio Di Qualsiasi Età E Per L’eventuale Ampliamento Dell’offerta Ai Soggetti Anziani; Centro Nazionale Di Epidemiologia: Roma, Italy, 2013. [Google Scholar]
- Endrich, M.M.; Blank, P.R.; Szucs, T.D. Influenza vaccination uptake and socioeconomic determinants in 11 European countries. Vaccine 2009, 27, 4018–4024. [Google Scholar] [CrossRef]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the elderly: The challenge of immune changes with aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. A. Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Melegaro, A.; Edmunds, W.J. The 23-valent pneumococcal polysaccharide vaccine. Part, I. Efficacy of PPV in the elderly: A comparison of meta-analyses. Eur. J. Epidemiol. 2004, 19, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, B.; Herndler-Brandstetter, D.; Schwanninger, A.; Weiskopf, D.; Grubeck-Loebenstein, B. Biology of Immune Responses to Vaccines in Elderly Persons. Clin. Infect. Dis. 2008, 46, 1078–1084. [Google Scholar] [CrossRef]
- Siegrist, C.A.; Aspinall, R. B-cell responses to vaccination at the extremes of age. Nat. Rev. Immunol. 2009, 9, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Grundy, E.J.; Suddek, T.; Filippidis, F.T.; Majeed, A.; Coronini-Cronberg, S. Smoking, SARS-CoV-2 and COVID-19: A review of reviews considering implications for public health policy and practice. Tob. Induc. Dis. 2020, 18, 58. [Google Scholar] [CrossRef]
Characteristics of Study Participants | All | <65 Years | ≥65 Years |
---|---|---|---|
(n = 198,828) | (n = 170,731) | (n = 28,097) | |
Socio-demographic characteristics | |||
Sex, males, No. (%) | 80167 (40.3) | 66382 (38.9) | 13785 (49.1) |
Age, years, mean ± SD | 48.0 ± 14.7 | 44.2 ± 12.1 | 70.8 ± 5.5 |
Education, No. (%) | |||
Elementary school or less | 1300 (0.7) | 341 (0.2) | 959 (3.0) |
Middle or High school | 79360 (39.9) | 66412 (38.9) | 12948 (46.1) |
University degree or post-graduate | 118168 (59.4) | 103978 (60.9) | 14190 (50.4) |
Italian area of residence *, No. (%) | |||
Area 1 | 117176 (59.1) | 99905 (58.7) | 17271 (61.6) |
Area 2 | 25769 (13.0) | 22459 (13.2) | 3310 (11.8) |
Area 3 | 43107 (21.7) | 37271 (21.9) | 5836 (20.8) |
Area 4 | 12350 (6.2) | 10705 (6.3) | 1645 (5.9) |
Smoking status, No. (%) | |||
Never | 114049 (57.4) | 100499 (58.9) | 13550 (48.2) |
Former smoker | 47779 (24.0) | 36979 (21.7) | 10800 (38.4) |
Current | 37000 (18.6) | 33253 (19.5) | 3747 (13.3) |
Self-reported diseases ** | |||
Lung diseases, No. (%) | 11456 (5.8) | 9377 (5.5) | 2079 (7.4) |
CVD, No. (%) | 15284 (7.7) | 7702 (4.5) | 7582 (27.0) |
Hypertension, No. (%) | 33320 (16.8) | 19509 (11.4) | 13811 (49.2) |
Oncological diseases, No. (%) | 6719 (3.4) | 4189 (2.5) | 2530 (9.0) |
Depression and/or anxiety, No. (%) | 20563 (10.3) | 16401 (9.6) | 4162 (14.8) |
Liver diseases, No. (%) | 1487 (0.8) | 1011 (0.6) | 476 (1.7) |
Renal diseases, No. (%) | 1689 (0.9) | 1133 (0.7) | 556 (2.0) |
Diabetes treated with medications, No. (%) | 4594 (2.3) | 2494 (1.5) | 2100 (7.5) |
Metabolic diseases, No. (%) | 20261 (10.2) | 11379 (6.7) | 8882 (31.6) |
Thyroid diseases, No. (%) | 14717 (7.4) | 11596 (6.8) | 3121 (11.1) |
Diseases of the immune system, No. (%) | 17514 (8.8) | 14428 (8.5) | 3086 (11.0) |
Dependency in daily activities, No. (%) | 927 (0.5) | 393 (0.2) | 534 (1.9) |
Self-rated health, No. (%) | |||
Very bad or Bad | 1811 (0.9) | 1249 (0.7) | 562 (2.0) |
Adequate | 29745 (15.0) | 21768 (12.8) | 7977 (28.4) |
Good or Very good | 167272 (84.1) | 147714 (86.5) | 19558 (69.6) |
Influenza vaccination during last autumn, No. (%) | 41820 (21.0) | 26809 (15.7) | 15011 (53.4) |
Anti-pneumococcal vaccination in the last 12 months, No. (%) | 7178 (3.6) | 3717 (2.2) | 3461 (12.3) |
Contact with confirmed COVID-19 cases, No. (%) | 16025 (8.1) | 14744 (8.6) | 1281 (4.6) |
Characteristics of Study Participants | <65 Years | ≥65 Years | ||||
---|---|---|---|---|---|---|
SARS-CoV-2 NPS Test | p-Value | SARS-CoV-2 NPS Test | p-Value | |||
Negative Result | Positive Result | Negative Result | Positive Result | |||
(n = 4705) | (n = 1356) | (n = 299) | (n = 320) | |||
Socio-demographic characteristics | ||||||
Sex, males, No. (%) | 1450 (30.8) | 530 (39.1) | <0.0001 | 175 (58.5) | 137 (42.8) | <0.0001 |
Age, years, mean ± SD | 44.8 ± 11.4 | 46.5 ± 11.5 | <0.0001 | 71.4 ± 7.7 | 76.9 ± 9.7 | <0.0001 |
Italian area of residence *, No. (%) | <0.0001 | <0.0001 | ||||
Area 1 | 2248 (47.9) | 942 (69.6) | 172 (57.7) | 262 (82.1) | ||
Area 2 | 641 (13.7) | 135 (10.0) | 45 (15.1) | 18 (5.6) | ||
Area 3 | 1524 (32.5) | 247 (18.3) | 69 (23.2) | 31 (9.7) | ||
Area 4 | 279 (6.0) | 29 (2.1) | 12 (4.0) | 8 (2.5) | ||
Education, No. (%) | <0.0001 | <0.0001 | ||||
Elementary school or less | 55 (1.2) | 12 (0.9) | 17 (5.7) | 91 (28.4) | ||
Middle or High school | 1129 (24.0) | 450 (33.2) | 84 (28.1) | 120 (37.5) | ||
University degree or post-graduate | 3521 (74.8) | 894 (65.9) | 198 (66.2) | 109 (34.1) | ||
Smoking status, No. (%) | <0.0001 | <0.0001 | ||||
Never | 2945 (62.6) | 896 (66.1) | 154 (51.5) | 218 (68.1) | ||
Former smoker | 917 (19.5) | 321 (23.7) | 107 (35.8) | 83 (25.9) | ||
Current | 843 (17.9) | 139 (10.3) | 38 (12.7) | 19 (5.9) | ||
Self-reported diseases ** and health status | ||||||
Lung diseases, No. (%) | 341 (7.3) | 104 (7.7) | 0.5996 | 38 (12.7) | 48 (15.0) | 0.4102 |
CVD, No. (%) | 208 (4.4) | 75 (5.5) | 0.0878 | 103 (34.5) | 146 (45.6) | 0.0046 |
Hypertension, No. (%) | 631 (13.4) | 205 (15.1) | 0.1083 | 151 (50.5) | 181 (56.6) | 0.1308 |
Oncological diseases, No. (%) | 123 (2.6) | 32 (2.4) | 0.6011 | 40 (13.4) | 32 (10.0) | 0.1902 |
Depression and/or anxiety, No. (%) | 461 (9.8) | 113 (8.3) | 0.1046 | 67 (22.4) | 121 (37.8) | <0.0001 |
Liver diseases, No. (%) | 39 (0.8) | 6 (0.4) | 0.1442 | 4 (1.3) | 10 (3.1) | 0.1782 |
Renal diseases, No. (%) | 33 (0.7) | 10 (0.7) | 0.8891 | 15 (5.0) | 18 (5.6) | 0.7364 |
Diabetes treated with medications, No. (%) | 77 (1.6) | 30 (2.2) | 0.1560 | 24 (8.0) | 32 (10.0) | 0.3924 |
Metabolic diseases, No. (%) | 324 (6.9) | 121 (8.9) | 0.0113 | 98 (32.8) | 89 (27.8) | 0.1790 |
Thyroid diseases, No. (%) | 392 (8.3) | 90 (6.6) | 0.0422 | 27 (9.0) | 39 (12.2) | 0.2034 |
Diseases of the immune system, No. (%) | 479 (10.2) | 111 (8.2) | 0.0290 | 25 (8.4) | 39 (12.2) | 0.1182 |
Dependency in daily activities, No. (%) | 73 (1.6) | 16 (1.2) | 0.3162 | 41 (13.7) | 90 (28.1) | <0.0001 |
Self-rated health, No. (%) | 0.2937 | 0.0025 | ||||
Very bad or bad | 54 (1.2) | 22 (1.6) | 19 (6.4) | 22 (6.9) | ||
Adequate | 725 (15.4) | 219 (16.2) | 102 (34.1) | 151 (47.2) | ||
Good or very good | 3926 (83.4) | 1115 (82.2) | 178 (59.5) | 147 (45.9) | ||
Influenza vaccination during last autumn, No. (%) | 1502 (31.9) | 382 (28.2) | 0.0085 | 182 (60.9) | 180 (56.3) | 0.2438 |
Anti-pneumococcal vaccination in the last 12 months, No. (%) | 191 (4.1) | 35 (2.6) | 0.0114 | 63 (21.1) | 32 (10.0) | 0.0001 |
Contact with confirmed COVID-19 cases, No. (%) | 2837 (60.3) | 957 (70.6) | <0.0001 | 113 (37.8) | 215 (67.2) | <0.0001 |
All | <65 Years | ≥65 Years | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
(a) Not adjusted model | |||||||||
Flu shot during last autumn | 1.02 | 0.91–1.15 | 0.7387 | 0.86 | 0.75–0.99 | 0.0301 | 0.83 | 0.60–1.14 | 0.2440 |
Anti-pneumococcal vaccination | 0.77 | 0.58–1.02 | 0.0635 | 0.67 | 0.46–0.97 | 0.0342 | 0.42 | 0.26–0.66 | 0.0002 |
(b) Adjusted model * | |||||||||
Flu shot during last autumn | 0.89 | 0.78–1.01 | 0.1408 | 0.85 | 0.74–0.98 | 0.0235 | 0.87 | 0.59–1.28 | 0.4826 |
Anti-pneumococcal vaccination | 0.56 | 0.41–0.75 | 0.0001 | 0.61 | 0.41–0.91 | 0.0156 | 0.56 | 0.33–0.95 | 0.0313 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noale, M.; Trevisan, C.; Maggi, S.; Antonelli Incalzi, R.; Pedone, C.; Di Bari, M.; Adorni, F.; Jesuthasan, N.; Sojic, A.; Galli, M.; et al. The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey. Vaccines 2020, 8, 471. https://doi.org/10.3390/vaccines8030471
Noale M, Trevisan C, Maggi S, Antonelli Incalzi R, Pedone C, Di Bari M, Adorni F, Jesuthasan N, Sojic A, Galli M, et al. The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey. Vaccines. 2020; 8(3):471. https://doi.org/10.3390/vaccines8030471
Chicago/Turabian StyleNoale, Marianna, Caterina Trevisan, Stefania Maggi, Raffaele Antonelli Incalzi, Claudio Pedone, Mauro Di Bari, Fulvio Adorni, Nithiya Jesuthasan, Aleksandra Sojic, Massimo Galli, and et al. 2020. "The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey" Vaccines 8, no. 3: 471. https://doi.org/10.3390/vaccines8030471
APA StyleNoale, M., Trevisan, C., Maggi, S., Antonelli Incalzi, R., Pedone, C., Di Bari, M., Adorni, F., Jesuthasan, N., Sojic, A., Galli, M., Giacomelli, A., Molinaro, S., Bianchi, F., Mastroianni, C., Prinelli, F., & Group, o. b. o. t. E. W. (2020). The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey. Vaccines, 8(3), 471. https://doi.org/10.3390/vaccines8030471