A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile
<p>Serum antibody responses in immunized CD-1 mice and toxin A challenge. Male and female CD-1 mice (n = 10, per group) were vaccinated intramuscular (i.m.) with 1 × 10<sup>10</sup> virus particles of SC-Ad6-PEB1, SC-Ad6-TcdA/B, or phosphate-buffered saline (PBS). Serum collected at week 6 was assayed by ELISA and neutralization assay. (<b>A</b>) Serum endpoint titers were determined at week 6 for male and female mice. Columns show geometric mean; bars show standard deviation; (* <span class="html-italic">p</span> < 0.01). (<b>B</b>) Neutralizing titers for Toxin A. Columns show mean; bars show standard deviation; dotted line indicates the limit of detection; (* <span class="html-italic">p</span> < 0.05). (<b>C</b>) Combined male and female survival curve following Toxin A challenge at week 8 after single immunization (* <span class="html-italic">p</span> < 0.01).</p> "> Figure 2
<p>SC-Ad6-TcdA/B provides protection against lethal challenge long after single immunization. Female CD-1 mice (n = 5) were vaccinated i.m. with 1×10<sup>10</sup> virus particles of SC-Ad6-PEB1, SC-Ad6-TcdA/B, or PBS. Serum collected at weeks 3, 6, 14, 26, and 36 were titrated to determine binding endpoint titers for (<b>A</b>) toxin A and (<b>B</b>) toxin B. In both panels, points show geometric mean and bars show standard deviation. (<b>C</b>) Mean neutralizing titers for toxin B were significantly higher in the SC-Ad-TcdA/B than SC-Ad-PEB1 immunized animals. Columns show mean; bars show standard deviation; the dotted line indicates the limit of detection; (* <span class="html-italic">p</span> < 0.05). (<b>D</b>) Survival curve for SC-Ad-TcdA/B vaccinated mice challenged with toxin A shows significant protection compared to PBS or PEB1 control animals (* <span class="html-italic">p</span> < 0.01).</p> "> Figure 3
<p>Serum-neutralizing antibody responses in immunized Syrian hamsters and protection from lethal spore challenge. Female Syrian hamsters (n = 10) were vaccinated i.n. or i.m. with 1 × 10<sup>11</sup> virus particles of SC-Ad6-TcdA/B, or i.n. with PBS. Serum collected at 6, 12, and 18 weeks after immunization were assayed to determine mean neutralizing titers for (<b>A</b>) toxin A and (<b>B</b>) toxin B. In both panels, points show the mean titer, bars show standard deviation, and the dotted line indicates the limit of detection (*Adjusted <span class="html-italic">p</span> < 0.05 compared to control, **Adjusted <span class="html-italic">p</span> < 0.05 compared to control and i.n. route). (<b>C</b>) Survival curve for SC-Ad-TcdA/B vaccinated animals challenged with UK1 spores shows significant protection compared to PBS control animals (* <span class="html-italic">p</span> < 0.01).</p> "> Figure 4
<p>SC-Ad6-TcdA/B provides protection against lethal spore challenge 45 weeks after single immunization. Female Syrian hamsters (n = 10) were vaccinated i.n. or i.m. with 1 × 10<sup>11</sup> virus particles of SC-Ad6-TcdA/B, or i.n. with PBS. Serum collected at weeks 6, 12, 18, 25, and 36 weeks after immunization were assayed to determine mean neutralizing titers for (<b>A</b>) toxin A and (<b>B</b>) toxin B. In both panels, points show the mean titer, bars show standard deviation, and the dotted line indicates the limit of detection (*Adjusted <span class="html-italic">p</span> < 0.05 compared to control, **Adjusted <span class="html-italic">p</span> < 0.05 compared to control and i.n. route). <span class="html-italic">X</span>-axis break represents the termination of the low-dose challenge study; serum collected at week 36 from remaining animals in each group (n = 5). (<b>C</b>) Survival curve for i.n. (n = 5) and i.m. (n = 4) SC-Ad-TcdA/B vaccinated animals challenged with UK1 spores 45 weeks after single immunization shows significant protection compared to PBS control animals (n = 4) (* <span class="html-italic">p</span> < 0.01). (<b>D</b>) Week 36 neutralizing toxin A and toxin B neutralizing titers of i.n. immunized animals that survived the challenge compared to non-survivors. Columns show the mean titer, bars show standard deviation, and the dotted line indicates the limit of detection.</p> "> Figure 5
<p>SC-Ad6-TcdA/B generates superior antibody and protection against lethal spore challenge compared to toxoid immunization. Male and female Syrian hamsters (n = 5) were vaccinated with SC-Ad6-TcdA/B, toxoids A and B, or Alum. Serum collected at 6, 12, and 18 weeks after immunization were assayed to determine mean neutralizing titers for (<b>A</b>) toxin A and (<b>B</b>) toxin B. In both panels, points show the mean titer, bars show standard deviation, and the dotted line indicates the limit of detection (* Adjusted <span class="html-italic">p</span> < 0.05 compared to control, ** Adjusted <span class="html-italic">p</span> < 0.05 compared to alum controls). (<b>C</b>) Survival curve for SC-Ad-TcdA/B vaccinated animals challenged with UK1 spores shows significant protection compared to toxoids A and B, and alum control animals (<span class="html-italic">p</span> < 0.01).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Single-Cycle Adenoviruses
2.3. Western Blotting
2.4. Animals
2.5. Immunizations and Sample Collection
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Cytotoxicity and Neutralization Assays
2.8. Challenge with Recombinant C. difficile Toxin A in Mice
2.9. Hematology and Clinical Chemistry in Hamsters
2.10. Challenge with C. difficile Spores in Hamsters
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oren, A.; Rupnik, M. Clostridium difficile and Clostridioides difficile: Two validly published and correct names. Anaerobe 2018, 52, 125–126. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013, 108, 478–498. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, E.J.; Surawicz, C.M. Clostridium difficile infection. Lancet 2008, 371, 1486–1488. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, A.T.; Koup, R.A.; Roederer, M.; Bailer, R.T.; Enama, M.E.; Moodie, Z.; Gu, L.; Martin, J.E.; Novik, L.; Chakrabarti, B.K.; et al. Phase 1 Safety and Immunogenicity Evaluation of a Multiclade HIV-1 Candidate Vaccine Delivered by a Replication-Defective Recombinant Adenovirus Vector. J. Infect. Dis. 2006, 194, 1638–1649. [Google Scholar] [CrossRef] [Green Version]
- Kink, J.A.; Williams, J.A. Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect. Immun. 1998, 66, 2018–2025. [Google Scholar] [CrossRef] [Green Version]
- Babcock, G.J.; Broering, T.J.; Hernandez, H.J.; Mandell, R.B.; Donahue, K.; Boatright, N.; Stack, A.M.; Lowy, I.; Graziano, R.; Molrine, D.; et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun. 2006, 74, 6339–6347. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.H.; Iaconis, J.P.; Rolfe, R.D. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect. Immun. 1987, 55, 2984–2992. [Google Scholar] [CrossRef] [Green Version]
- Aboudola, S.; Kotloff, K.L.; Kyne, L.; Warny, M.; Kelly, E.C.; Sougioultzis, S.; Giannasca, P.J.; Monath, T.P.; Kelly, C.P. Clostridium difficile vaccine and serum immunoglobulin G antibody response to toxin A. Infect. Immun. 2003, 71, 1608–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, G.P.; Rood, J.I.; Lyras, D. The role of toxin A and toxin B in Clostridium difficile-associated disease: Past and present perspectives. Gut Microbes 2010, 1, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktories, K.; Schwan, C.; Jank, T. Clostridium difficile Toxin Biology. Annu. Rev. Microbiol. 2017, 71, 281–307. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Ho, J.G.; Lin, S.J.; Palcic, M.M.; Rupnik, M.; Ng, K.K. Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol. 2006, 13, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.; Leuzzi, R.; Buckley, A.; Irvine, J.; Candlish, D.; Scarselli, M.; Douce, G.R. Vaccination against Clostridium difficile using toxin fragments: Observations and analysis in animal models. Gut Microbes 2014, 5, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, E.; Kitchin, N.; Peng, Y.; Eiden, J.; Gruber, W.; Johnson, E.; Jansen, K.U.; Pride, M.W.; Pedneault, L. A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 2016, 34, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.; Bragg, A.; Fahim, G.; Shah, M.; Hermes-DeSantis, E.R. A Review of the Safety and Efficacy of Vaccines as Prophylaxis for Clostridium difficile Infections. Vaccines 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, W.D.; Steiner, T.S. Adaptive immune response to Clostridium difficile infection: A perspective for prevention and therapy. Eur. J. Immunol. 2018, 48, 398–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, R.G.; Flint, M.; Kalyan, N.; Johnson, E.; Witko, S.E.; Kotash, C.; Zhao, P.; Megati, S.; Yurgelonis, I.; Lee, P.K.; et al. A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology 2013, 159, 1254–1266. [Google Scholar] [CrossRef]
- Lyerly, D.M.; Phelps, C.J.; Toth, J.; Wilkins, T.D. Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect. Immun. 1986, 54, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Lee, C.H. Management of Primary and Recurrent Clostridium difficile Infection: An Update. Antibiotics 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosby, C.M.; Barry, M.A. IIIa deleted adenovirus as a single-cycle genome replicating vector. Virology 2014, 462–463, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosby, C.M.; Barry, M.A. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors. Genes 2017, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Crosby, C.M.; Matchett, W.E.; Anguiano-Zarate, S.S.; Parks, C.A.; Weaver, E.A.; Pease, L.R.; Webby, R.J.; Barry, M.A. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matchett, W.E.; Anguiano-Zarate, S.S.; Nehete, P.N.; Shelton, K.; Nehete, B.P.; Yang, G.; Dorta-Estremera, S.; Barnette, P.; Xiao, P.; Byrareddy, S.N.; et al. Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anguiano-Zarate, S.S.; Matchett, W.E.; Nehete, P.N.; Sastry, J.K.; Marzi, A.; Barry, M.A. A Replicating Single-Cycle Adenovirus Vaccine Against Ebola Virus. J. Infect. Dis. 2018, 218, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- Baliban, S.M.; Michael, A.; Shammassian, B.; Mudakha, S.; Khan, A.S.; Cocklin, S.; Zentner, I.; Latimer, B.P.; Bouillaut, L.; Hunter, M.; et al. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo. Infect. Immun. 2014, 82, 4080–4091. [Google Scholar] [CrossRef] [Green Version]
- Crosby, C.M.; Nehete, P.; Sastry, K.J.; Barry, M.A. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines. J. Virol. 2015, 89, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Nyberg-Hoffman, C.; Shabram, P.; Li, W.; Giroux, D.; Aguilar-Cordova, E. Sensitivity and reproducibility in adenoviral infectious titer determination. Nat. Med. 1997, 3, 808–811. [Google Scholar] [CrossRef]
- Ji, H. Lysis of cultured cells for immunoprecipitation. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5466. [Google Scholar] [CrossRef]
- Frey, A.; Di Canzio, J.; Zurakowski, D. A statistically defined endpoint titer determination method for immunoassays. J. Immunol. Methods 1998, 221, 35–41. [Google Scholar] [CrossRef]
- Xie, J.; Zorman, J.; Indrawati, L.; Horton, M.; Soring, K.; Antonello, J.M.; Zhang, Y.; Secore, S.; Miezeiewski, M.; Wang, S.; et al. Development and optimization of a novel assay to measure neutralizing antibodies against Clostridium difficile toxins. Clin. Vaccine Immunol. 2013, 20, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, D.F.; Rosenberg, T.; Zaharatos, J.; Franco, D.; Ho, D.D. A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine 2009, 27, 3598–3604. [Google Scholar] [CrossRef] [Green Version]
- Seregin, S.S.; Aldhamen, Y.A.; Rastall, D.P.W.; Godbehere, S.; Amalfitano, A. Adenovirus-based vaccination against Clostridium difficile toxin A allows for rapid humoral immunity and complete protection from toxin A lethal challenge in mice. Vaccine 2012, 30, 1492–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Cassan, R.; Johnstone, D.; Han, X.; Joyee, A.G.; McQuoid, M.; Masi, A.; Merluza, J.; Hrehorak, B.; Reid, R.; et al. Novel Clostridium difficile Anti-Toxin (TcdA and TcdB) Humanized Monoclonal Antibodies Demonstrate In Vitro Neutralization across a Broad Spectrum of Clinical Strains and In Vivo Potency in a Hamster Spore Challenge Model. PLoS ONE 2016, 11, e0157970. [Google Scholar] [CrossRef] [PubMed]
- Sorg, J.A.; Sonenshein, A.L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 2010, 192, 4983–4990. [Google Scholar] [CrossRef] [Green Version]
- Anosova, N.G.; Brown, A.M.; Li, L.; Liu, N.; Cole, L.E.; Zhang, J.; Mehta, H.; Kleanthous, H. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J. Med. Microbiol. 2013, 62, 1394–1404. [Google Scholar] [CrossRef]
- Kuehne, S.A.; Cartman, S.T.; Heap, J.T.; Kelly, M.L.; Cockayne, A.; Minton, N.P. The role of toxin A and toxin B in Clostridium difficile infection. Nature 2010, 467, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Suckow, M.; Stevens, K.; Wilson, R. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Academic Press: London, UK, 2012. [Google Scholar] [CrossRef]
- Hutton, M.L.; Mackin, K.E.; Chakravorty, A.; Lyras, D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol. Lett. 2014, 352, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, M.; Janezic, S. An Update on Clostridium difficile Toxinotyping. J. Clin. Microbiol. 2016, 54, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Depestel, D.D.; Aronoff, D.M. Epidemiology of Clostridium difficile infection. J. Pharm. Pract. 2013, 26, 464–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; West, K.; Hayasaka, D.; Ennis, F.A.; Terajima, M. Recombinant Adenovirus Vector Vaccine Induces Stronger Cytotoxic T-Cell Responses Than Recombinant Vaccinia Virus Vector, Plasmid DNA, or a Combination of These. Viral Immunol. 2005, 18, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.M.; Da Costa, A.; Yamamoto, A.; Berry, D.; Lindsay, R.W.B.; Darrah, P.A.; Wang, L.; Cheng, C.; Kong, W.-P.; Gall, J.G.D.; et al. Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization. J. Immunol. 2013, 190, 2720–2735. [Google Scholar] [CrossRef] [Green Version]
- Best, E.L.; Freeman, J.; Wilcox, M.H. Models for the study of Clostridium difficile infection. Gut Microbes 2012, 3, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Kuehne, S.A.; Collery, M.M.; Kelly, M.L.; Cartman, S.T.; Cockayne, A.; Minton, N.P. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 2014, 209, 83–86. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves antitoxin antibody. Nat. Rev. Drug Discov. 2016, 15, 811. [Google Scholar] [CrossRef]
- Kyne, L.; Warny, M.; Qamar, A.; Kelly, C.P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 2000, 342, 390–397. [Google Scholar] [CrossRef]
- Océane, P. A review of 65 years of human adenovirus seroprevalence. Expert Rev. Vaccines 2019, 18. [Google Scholar] [CrossRef]
- Fausther-Bovendo, H.; Kobinger, G.P. Pre-existing immunity against Ad vectors: Humoral, cellular, and innate response, what’s important? Hum. Vaccines Immunother. 2014, 10, 2875–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogels, R.; Zuijdgeest, D.; van Rijnsoever, R.; Hartkoorn, E.; Damen, I.; de Bethune, M.P.; Kostense, S.; Penders, G.; Helmus, N.; Koudstaal, W.; et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: Efficient human cell infection and bypass of preexisting adenovirus immunity. J. Virol. 2003, 77, 8263–8271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio, E.; Del Grosso, N.; Chicca, A.; Midulla, M. Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J. Hyg. 1982, 89, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croyle, M.A.; Patel, A.; Tran, K.N.; Gray, M.; Zhang, Y.; Strong, J.E.; Feldmann, H.; Kobinger, G.P. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS ONE 2008, 3, e3548. [Google Scholar] [CrossRef]
- Richardson, J.S.; Pillet, S.; Bello, A.J.; Kobinger, G.P. Airway delivery of an adenovirus-based Ebola virus vaccine bypasses existing immunity to homologous adenovirus in nonhuman primates. J. Virol. 2013, 87, 3668–3677. [Google Scholar] [CrossRef] [Green Version]
- Munoz, R.E.; Piedra, P.A.; Demmler, G.J. Disseminated Adenovirus Disease in Immunocompromised and Immunocompetent Children. Clin. Infect. Dis. 1998, 27, 1194–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matchett, W.E.; Anguiano-Zarate, S.; Malewana, G.B.R.; Mudrick, H.; Weldy, M.; Evert, C.; Khoruts, A.; Sadowsky, M.; Barry, M.A. A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines 2020, 8, 470. https://doi.org/10.3390/vaccines8030470
Matchett WE, Anguiano-Zarate S, Malewana GBR, Mudrick H, Weldy M, Evert C, Khoruts A, Sadowsky M, Barry MA. A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines. 2020; 8(3):470. https://doi.org/10.3390/vaccines8030470
Chicago/Turabian StyleMatchett, William E., Stephanie Anguiano-Zarate, Goda Baddage Rakitha Malewana, Haley Mudrick, Melissa Weldy, Clayton Evert, Alexander Khoruts, Michael Sadowsky, and Michael A. Barry. 2020. "A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile" Vaccines 8, no. 3: 470. https://doi.org/10.3390/vaccines8030470
APA StyleMatchett, W. E., Anguiano-Zarate, S., Malewana, G. B. R., Mudrick, H., Weldy, M., Evert, C., Khoruts, A., Sadowsky, M., & Barry, M. A. (2020). A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines, 8(3), 470. https://doi.org/10.3390/vaccines8030470