A Novel Index for Impervious Surface Area Mapping: Development and Validation
"> Figure 1
<p>Flowchart of the proposed perpendicular impervious surface index (PISI). Corresponding section numbers describing the flowchart are added for easy reference. BCI, biophysical composition index; NDBI, normalized difference built-up index; ISA, impervious surface area.</p> "> Figure 2
<p>Spectral curves of urban components in the spectral libraries. The four components were defined as dark ISA, bright ISA, soil, and vegetation (dark gray columns represent, from left to right, blue, green, red, and near-infrared (NIR) band locations of Landsat 8).</p> "> Figure 3
<p>Scatter plot of selected samples in the blue–NIR feature space.</p> "> Figure 4
<p>PISI reference line and sample distance to this line. The distance in the area above the reference line is negative, and below the reference line is positive.</p> "> Figure 5
<p>Establishment of reference line of PISI. (<b>a</b>–<b>d</b>) Represents the steps of establishment of reference line, respectively.</p> "> Figure 6
<p>Test areas: (<b>a</b>) Wuhan; (<b>b</b>) Guangzhou; (<b>c</b>) Shenyang; and (<b>d</b>) Xining. These cities are illustrated by using true-color composite Landsat 8 images.</p> "> Figure 7
<p>High-resolution images of representative subregions. (<b>a</b>–<b>d</b>) are the subregions selected from Wuhan, Guangzhou, Shenyang and Xining respectively.</p> "> Figure 8
<p>ISA extraction results by the PISI: (<b>a</b>) Wuhan; (<b>b</b>) Shenyang; (<b>c</b>) Guangzhou; and (<b>d</b>) Xining. Both sides show grayscale images obtained after applying the PISI.</p> "> Figure 9
<p>Relationship between PISI value and proportion of ISA in six simulation cases.</p> "> Figure 10
<p>Calculation of ISA, soil, and vegetation proportion of pixels in Landsat 8 images: (<b>a</b>) one pixel in the Landsat 8 image; and (<b>b</b>) pixels of the high-resolution image in one pixel of the Landsat 8 image.</p> "> Figure 11
<p>Relationship between PISI value and proportion of ISA in Landsat 8 images. (<b>a</b>–<b>d</b>) correspond to the subregions shown in <a href="#remotesensing-10-01521-f007" class="html-fig">Figure 7</a>.</p> "> Figure 12
<p>Effect of ISA proportion threshold on accuracy under fixed threshold [−0.0558, 0.1462].</p> "> Figure 13
<p>Effect of ISA proportion threshold on accuracy under adaptive threshold. (<b>a</b>–<b>d</b>) correspond to the subregions shown in <a href="#remotesensing-10-01521-f007" class="html-fig">Figure 7</a>.</p> "> Figure 14
<p>Histograms of values of different indices for each component (ISA, soil, and vegetation) in the four subregions: (<b>a</b>–<b>d</b>) the results of the four subregions in <a href="#remotesensing-10-01521-f007" class="html-fig">Figure 7</a>. The three columns, from left to right, are PISI, BCI, and NDBI.</p> "> Figure 15
<p>ISA extraction results for each city: (<b>a</b>–<b>d</b>) the overall, urban, suburban, and rural scene extraction results, respectively. In each unit, from left to right, are true-color composite images and the results of ISA extraction using PISI, BCI, and NDBI.</p> "> Figure 16
<p>Worldview-3 image and its segmentation result by using PISI.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Spectral Analysis of the Main Components in Urban Areas
2.2. PISI Development
2.2.1. Fitting the Soil Line
2.2.2. Fitting the ISA Line
2.2.3. Calculating the Reference Line
3. Test Area and Data
4. Results
4.1. Applying PISI to Landsat 8 Images
4.2. PISI Threshold Analysis
4.2.1. Correlation Analysis of PISI and ISA Proportions
4.2.2. PISI Threshold Determination
4.3. Comparative Analyses with Other Indices
4.3.1. Separability Analysis with Other Indices
4.3.2. Extraction Precision Analysis with Other Indices
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Schueler, T.R. The Importance of Imperviousness. Water Prot. Tech. 1994, 1, 100–111. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 2006, 108, 1–24. [Google Scholar] [CrossRef]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Huang, F.; Zhan, W.; Voogt, J. Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. Remote Sens. Environ. 2016, 186, 1–12. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Harbor, J.M. A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.M. Completion of the 1990s National Land Cover Data Set for the Conterminous United States From LandSat Thematic Mapper Data and Ancillary Data Sources. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar] [CrossRef]
- Homer, C.H.; Fry, J.A.; Barnes, C.A. The National Land Cover Database. US Geological Survey Fact Sheet. 2012, 3020, 1–4. [Google Scholar]
- Song, X. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Kotarba, A.Z.; Aleksandrowicz, S. Impervious surface detection with nighttime photography from the International Space Station. Remote Sens. Environ. 2016, 176, 295–307. [Google Scholar] [CrossRef]
- Masek, J.G.; Lindsay, F.E.; Goward, S.N. Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [Google Scholar] [CrossRef]
- Shi, L.F.; Ling, F.; Ge, Y. Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016. Remote Sens. 2017, 9, 1148. [Google Scholar] [CrossRef]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.Q. Extraction of Impervious Surface Areas from High Spatial Resolution Imagery by Multiple Agent Segmentation and Classification. Photogramm. Eng. Remote Sens. 2015, 74, 857–868. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S. A Linear Dirichlet Mixture Model for decomposing scenes: Application to analyzing urban functional zonings. Remote Sens. Environ. 2015, 169, 37–49. [Google Scholar] [CrossRef]
- Small, C.; Lu, J.W.T. Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens. Environ. 2006, 100, 441–456. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens. Environ. 2013, 133, 62–70. [Google Scholar] [CrossRef]
- Wu, C.S.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Pok, S.; Matsushita, B.; Fukushima, T. An easily implemented method to estimate impervious surface area on a large scale from MODIS time-series and improved DMSP-OLS nighttime light data. Int. J. Remote Sens. 2017, 133, 104–115. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2014, 7, 93–112. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.L.; Ren, J.C.; Zhang, A.Z.; Jia, X.P. Stratified spectral mixture analysis of medium resolution imagery for impervious surface mapping. Int. J. Appl. Earth Obs. Geoinform. 2017, 60, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Lucas, R.M.; Curran, P.J.; Honzak, M. Non-linear mixture modelling without end-members using an artificial neural network. Int. J. Remote Sens. 1997, 18, 937–953. [Google Scholar] [CrossRef]
- Chen, J.; Shen, M.G.; Zhu, X.L.; Tang, Y.H. Indicator of flower status derived from in situ hyperspectral measurement in an alpine meadow on the Tibetan Plateau. Ecol. Indic. 2009, 9, 818–823. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xu, H.; Du, L. Fast Extraction of Built-up Land Information from Remote Sensing Imagery. J. Geo-Inf. Sci. 2010, 12, 574–579. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.F.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Xie, D.; Zhao, Y. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens. Lett. 2009, 1, 213–221. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.; Dennison, P.; Hess, L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Roberts, D.A.; Quattrochi, D.A.; Hulley, G.C.; Hook, S.J.; Green, R.O. Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission. Remote Sens. Environ. 2012, 117, 83–101. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium; NASA: Washington, DC, USA, 1974; Volume 1, pp. 48–62. [Google Scholar]
- Birth, G.S.; Mcvey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. [Google Scholar] [CrossRef]
- Swain, P.H.; Davis, S.M. Remote sensing: The quantitative approach. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 3, 713–714. [Google Scholar] [CrossRef]
- Mausel, P.W. Optimum band selection for supervised classification of multispectral data. Photogramm. Eng. Remote Sens. 1990, 56, 55–60. [Google Scholar]
- Qin, L.; Xu, W.; Tian, Y.; Chen, B.; Wang, S. A River Channel Extraction Method for Urban Environments Based on Terrain Transition Lines. Water Resour. Res. 2018, 54, 4887–4900. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M. A Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, C.; Guo, H.; Shang, R. A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery. Remote Sens. 2017, 9, 942. [Google Scholar] [CrossRef]
- Deng, C.; Li, C.; Zhu, Z.; Xi, L. Subpixel urban impervious surface mapping: The impact of input Landsat images. ISPRS J. Photogramm. Remote Sens. 2017, 133, 89–103. [Google Scholar] [CrossRef]
- Tian, J.; Philpot, W.D. Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra. Remote Sens. Environ. 2015, 169, 280–289. [Google Scholar] [CrossRef]
- Parent, A.C.; Anctil, F.; Parent, L.É. Characterization of temporal variability in near-surface soil moisture at scales from 1 h to 2 weeks. J. Hydrol. 2006, 325, 56–66. [Google Scholar] [CrossRef]
- Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.R.; Vereecken, H. Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71. [Google Scholar] [CrossRef]
Subarea | a | b | c | d | Average | Threshold |
---|---|---|---|---|---|---|
0.26 | 0.9622 | 0.9898 | 0.9700 | 0.9721 | 0.9735 | [−0.0558, 0.1462] |
0.34 | 0.9217 | 0.9819 | 0.9667 | 0.9691 | 0.9648 | [−0.0337, 0.1462] |
0.51 | 0.7803 | 0.9004 | 0.9123 | 0.9244 | 0.8894 | [0.0126, 0.1462] |
Part a | Part b | Part c | Part d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISA and Soil | TD | SDI | J-M | TD | SDI | J-M | TD | SDI | J-M | TD | SDI | J-M |
PISI | 1213 | 1.36 | 0.92 | 1589 | 1.77 | 1.58 | 1588 | 1.77 | 1.57 | 1516 | 1.68 | 1.41 |
BCI | 841 | 1.03 | 0.54 | 1525 | 1.69 | 1.43 | 1219 | 1.36 | 0.93 | 1227 | 1.38 | 0.94 |
NDBI | 387 | 0.65 | 0.21 | 273 | 0.54 | 0.15 | 67 | 0.29 | 0.05 | 374 | 0.65 | 0.22 |
ISA and Vegetation | TD | SDI | J-M | TD | SDI | J-M | TD | SDI | J-M | TD | SDI | J-M |
PISI | 1344 | 1.49 | 1.11 | 1679 | 1.91 | 1.82 | 1547 | 1.72 | 1.48 | 1251 | 1.41 | 0.98 |
BCI | 1225 | 1.25 | 0.79 | 1508 | 1.67 | 1.39 | 1101 | 1.26 | 0.79 | 924 | 1.11 | 0.61 |
NDBI | 408 | 0.67 | 0.23 | 528 | 0.78 | 0.31 | 258 | 0.52 | 0.14 | 638 | 0.87 | 0.38 |
Index | Test Areas | |||||||
---|---|---|---|---|---|---|---|---|
Wuhan | Guangzhou | Shenyang | Xining | |||||
OA | Kappa | OA | Kappa | OA | Kappa | OA | Kappa | |
PISI | 94.13% | 0.8799 | 89.51% | 0.9295 | 96.50% | 0.7884 | 93.46% | 0.8659 |
BCI | 77.53% | 0.6670 | 78.02% | 0.8699 | 93.49% | 0.5676 | 84.03% | 0.6428 |
NDBI | 58.25% | 0.1592 | 77.77% | 0.1506 | 57.53% | 0.5338 | 64.83% | 0.3249 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Chen, H.; Song, Q.; Zheng, K. A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote Sens. 2018, 10, 1521. https://doi.org/10.3390/rs10101521
Tian Y, Chen H, Song Q, Zheng K. A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote Sensing. 2018; 10(10):1521. https://doi.org/10.3390/rs10101521
Chicago/Turabian StyleTian, Yugang, Hui Chen, Qingju Song, and Kun Zheng. 2018. "A Novel Index for Impervious Surface Area Mapping: Development and Validation" Remote Sensing 10, no. 10: 1521. https://doi.org/10.3390/rs10101521
APA StyleTian, Y., Chen, H., Song, Q., & Zheng, K. (2018). A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote Sensing, 10(10), 1521. https://doi.org/10.3390/rs10101521