Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping
"> Figure 1
<p>Study area and the distribution of the bare soil pixels, the colors show in which year(s) the considering bare soil pixel was present. The black rectangles show the locations of the focus area (used in most of the following figures) and the locations of the individual fields in <a href="#remotesensing-08-00906-f007" class="html-fig">Figure 7</a>, <a href="#remotesensing-08-00906-f008" class="html-fig">Figure 8</a>, <a href="#remotesensing-08-00906-f009" class="html-fig">Figure 9</a> and <a href="#remotesensing-08-00906-f010" class="html-fig">Figure 10</a>.</p> "> Figure 2
<p>Precipitation (l·m<sup>−2</sup>) and temperature data (°C) in the 28 days before the flight dates (3 September 2013, 11 April 2014 and 10 April 2015).</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) RGB-image of the focus area of the spectroscopy data for all flight dates (3 September 2013, 11 April 2014 and 10 April 2015); and (<b>d</b>–<b>f</b>) the corresponding selected bare soils for all three years.</p> "> Figure 4
<p>Mean reflectance values for all three years (2013, 2014, and 2015): before (<b>a</b>); and after (<b>b</b>) calibration.</p> "> Figure 5
<p>Distribution of the SMPE values for: (<b>a</b>) ‘13’14; and (<b>b</b>) ‘15’14. Distribution is given for the full spectra (ALL: 450–2200 nm), and for the specific ranges of the spectra (VIS: visible spectrum 450–700 nm, NIR: near-infrared spectrum 700–1400 nm, and SWIR: short-wave infrared 1400–2200 nm).</p> "> Figure 6
<p>Spatial distribution in the focus area of the SMPE values for: (<b>a</b>) ‘13’14; and (<b>b</b>) ‘15’14.</p> "> Figure 7
<p>SMPE values for: ‘13’14 (<b>a</b>); and ‘15’14 (<b>b</b>); and DEM (overlaid with a hillshade: 315° azimuth and 45° altitude) for an individual agricultural field (<b>c</b>).</p> "> Figure 8
<p>SMPE values for: ‘13’14 (<b>a</b>); and ‘15’14 (<b>b</b>) for an individual agricultural.</p> "> Figure 9
<p>Close-up of an individual agricultural field showing the year(s) each bare soil pixel was present (<b>a</b>); and the first PC of the multi-temporal composite (<b>b</b>).</p> "> Figure 10
<p>The first PC values (<b>d</b>–<b>f</b>,<b>k</b>–<b>m</b>); the corresponding 45° and 315° variograms (<b>a</b>–<b>c</b>,<b>h</b>–<b>j</b>); and the DEM (overlaid with a hillshade: 315° azimuth and 45° altitude) of two individual agricultural fields (Field I and Field II) for all three years (2013, 2014, and 2015) (<b>g</b>,<b>n</b>). The axes of the variograms have the distance (m) on the x-axis and the semi-variance on the y-axis.</p> "> Figure 11
<p>In-field variability shown by the first PC values: (<b>a</b>–<b>c</b>) for an individual agricultural field for all three years (2013, 2014, and 2015); and the corresponding DEM (overlaid with a hillshade: 315° azimuth and 45° altitude) (<b>d</b>).</p> "> Figure 12
<p>The 45° and 315° variograms at long distances for the first PC values (<b>a</b>–<b>g</b>) for all single (2013, 2014, and 2015) and multi-temporal composites (‘13’14, ‘14’15, ‘13’15, and ‘13’14’15). On the x-axis the distance (m) and on the y-axis the semi-variance.</p> "> Figure 13
<p>The 45° and 315° variograms at short distances for the first PC values (<b>a</b>–<b>g</b>) for all single (2013, 2014, and 2015) and multi-temporal composites (‘13’14, ‘14’15, ‘13’15, and ‘13’14’15). On the x-axis the distance [m] and on the y-axis the semi-variance.</p> "> Figure 14
<p>Distribution of the predicted sand percentages for all single images (2013, 2014, and 2015) and the multi-temporal composites (‘13’14, ‘14’15, ‘13’15, and ‘13’14’15) next to the distribution of the sand percentages of the field samples of ’14 and ’15.</p> ">
Abstract
:1. Introduction
2. Study Area and Soil Types
3. Materials and Methods
3.1. Preprocessing of Imaging Spectroscopy Data
3.2. Selecting Bare Soil Area
3.3. Multi-Temporal Calibration
3.4. Analysis of the Multi-temporal Calibration
3.4.1. Difference Analysis
3.4.2. Spatial Analysis
3.5. Multi-Temporal Compositing
3.6. Analysis of the Multi-Temporal Composites
3.7. Case Study
4. Results and Discussion
4.1. Selecting Bare Soil Area
4.2. Multi-Temporal Calibration
4.3. Analysis of the Multi-Temporal Calibration
4.3.1. Difference Analysis
4.3.2. Spatial Analysis
4.4. Multi-Temporal Composite
4.5. Analysis of the Multi-Temporal Composite
4.5.1. Small Scale Spatial Variability
4.5.2. Large Scale Spatial Variability
4.6. Case Study
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
APEX | Airborne Prism EXperiment |
DEM | digital elevation model |
nCAI | normalized cellulose absorption index |
NDRBI | normalized difference red blue index |
NDVI | normalized difference vegetation index |
NIR | near-infrared |
PC | principal component |
PCA | principal component analysis |
PLSR | partial least squares regression |
SM(A)PE | symmetric mean (absolute) percentage error |
SNR | signal to noise ratio |
SWIR | short-wave infrared |
VIS | visible |
VNIR | visible and near-infrared |
Appendix A
Year | n 1 | ALL 2 | VIS 3 | NIR 4 | SWIR 5 |
---|---|---|---|---|---|
‘13’14 | 54,981 | 11.7 ± 14.1 | 10.6 ± 14.1 | 13.8 ± 12.5 | 11.2 ± 15.1 |
‘15’14 | 154,270 | −8.2 ± 14.0 | −8.7 ± 13.2 | −7.7 ± 14.7 | −8.0 ± 14.3 |
Appendix B
References
- Ben-Dor, E.; Irons, J.R.; Epema, G. Chapter 3: Soil Reflectance. In Remote Sensing for the Earth Sciences, 3rd ed.; Rencz, A.N., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 111–188. [Google Scholar]
- Jenny, H. Factors of Soil Formation. A System of Quantitative Pedology, 1st ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1941; p. 281. [Google Scholar]
- Völkel, J.; Huber, J.; Leopold, M. Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone—Examples from the Colorado Front Range, USA. Appl. Geochem. 2011, 26, S143–S145. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Brown, D.J.; Shepherd, K.D.; Towett, E.; Vargas, R.; Montanarella, L. Soil spectroscopy: An opportunity to be seized. Glob. Ch. Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by VIS-NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Lagacherie, P.; Bailly, J.S.; Monestiez, P.; Gomez, C. Using scattered hyperspectral imagery data to map the soil properties of a region. Eur. J. Soil Sci. 2012, 63, 110–119. [Google Scholar] [CrossRef]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma 2010, 158, 32–45. [Google Scholar] [CrossRef]
- Kokaly, R.F.; King, T.V.V.; Hoefen, T.M. Surface Mineral Maps of Afghanistan Derived From HyMap Imaging Spectrometer Data, Version 2; U.S. Geological Survey: Reston, VA, USA, 2013.
- Mulder, V.L.; Plötze, M.; de Bruin, S.; Schaepman, M.E.; Mavris, C.; Kokaly, R.F.; Egli, M. Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 µm) and regression tree analysis. Geoderma 2013, 207–208, 279–290. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; MacDonald, L.M.; McLaughlin, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field VIS-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Stevens, A.; van Wesemael, B.; Bartholomeus, H.; Rosillon, D.; Tychon, B.; Ben-Dor, E. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 2008, 144, 395–404. [Google Scholar] [CrossRef]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness. Geoderma 2014, 226–227, 94–102. [Google Scholar] [CrossRef]
- Wu, C.Y.; Jacobson, A.R.; Laba, M.; Baveye, P.C. Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma 2009, 152, 171–180. [Google Scholar] [CrossRef]
- Atzberger, C. Systematic Evaluation of Factors Interfearing with Soil Color Retrieval from Space. In Proceedings of the Second EARSeL Workshop on Imaging Spectroscopy, Enschede, The Netherlands, 11–13 July 2000.
- Gerighausen, H.; Menz, G.; Kaufmann, H. Spatially explicit estimation of clay and organic carbon content in agricultural soils using multi-annual imaging spectroscopy data. Appl. Environ. Soil Sci. 2012. [Google Scholar] [CrossRef]
- ESA. Sentinel-2. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 (accessed on 12 September 2016).
- DLR. EnMAP Mission. Available online: http://www.enmap.org/?q=mission (accessed on 12 September 2016).
- Stefano, P.; Angelo, P.; Simone, P.; Filomena, R.; Federico, S.; Tiziana, S.; Umberto, A.; Vincenzo, C.; Acito, N.; Marco, D.; et al. The prisma hyperspectral mission: science activities and opportunities for agriculture and land monitoring. In Proceedings of the 2013 International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 4558–4561.
- Iwasaki, A.; Ohgi, N.; Tanii, J.; Kawashima, T.; Inada, H. Hyperspectral Imager Suite (HISUI)—Japanese hyper-multi spectral radiometer. In Proceedings of the 2011 International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 1025–1028.
- ISA. The Shalom Mission. Available online: http://space.gov.il/en/node/1144 (accessed on 12 September 2016).
- NASA. HyspIRI Mission Study. Available online: https://hyspiri.jpl.nasa.gov/ (accessed on 12 September 2016).
- Nocita, M.; Stevens, A.; Noon, C.; Van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using VIS-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Wang, J.R.; O’Neill, P.E.; Jackson, T.J.; Engman, E.T. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans. Geosci. Remote Sens. 1983, 21, 44–51. [Google Scholar] [CrossRef]
- Wang, Z.; Coburn, C.A.; Ren, X.; Teillet, P.M. Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor. Can. J. Soil Sci. 2012, 92, 297–313. [Google Scholar] [CrossRef]
- Cierniewski, J. A model for soil surface roughness influence on the spectral response of bare soils in the visible and near-infrared range. Remote Sens. Environ. 1987, 23, 97–115. [Google Scholar] [CrossRef]
- Piekarczyk, J.; Kazmierowski, C.; Krolewicz, S.; Cierniewski, J. Effects of soil surface roughness on soil reflectance measured in laboratory and outdoor conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 827–834. [Google Scholar] [CrossRef]
- Bogrekci, I.; Lee, W.S. Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV-VIS-NIR spectroscopy. Trans. ASABE 2006, 49, 1175–1180. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef]
- Levitt, D.G.; Simpson, J.R.; Huete, A.R. Estimates of surface soil water content using linear combinations of spectral wavebands. Theor. Appl. Climatol. 1990, 42, 245–252. [Google Scholar] [CrossRef]
- Haubrock, S.N.; Chabrillat, S.; Kuhnert, M.; Hostert, P.; Kaufmann, H. Surface soil moisture quantification and validation based on hyperspectral data and field measurements. J. Appl. Remote Sens. 2008. [Google Scholar] [CrossRef]
- Baumgardner, M.F.; Silva, L.F.; Biehl, L.L.; Stoner, E.R. Reflectance properties of soils. Adv. Agron. 1985, 38, 1–44. [Google Scholar]
- Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef]
- Bolliger, T.; Gatti, H.; Hantke, R. Zur Geologie und Paläontologie des Zürcher Oberlandes. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 1988, 133, 1–24. [Google Scholar]
- Amt für Landschaft und Natur. Bodenkarte Kanton Zürich 1:5000; Amt für Landschaft und Natur: Zürich, Swizerland, 1998. [Google Scholar]
- Fachstelle Bodenschutz. Bodenkartierung der Landwirtschaftsflächen des Kantons Zürich: Erläuterungen und Glossar; Fachstelle Bodenschutz: Zürich, Swizerland, 2016. [Google Scholar]
- Jäggli, F.; Peyer, K.; Pazeller, A.; Schwab, P. Grundlagenbericht zur Bodenkartierung des Kantons Zürich; Eidgenössische Forschungsanstalt für Agrarökologie und Landbau (FAL), Volkwirtschaftdirektion des: Zürich, Switzerland, 1998. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007; FAO: Rome, Italy, 2007. [Google Scholar]
- Bundesamt für Landestopografie Swisstopo. SwissTLM3D; Bundesamt für Landestopografie Swisstopo: Wabern, Switzerland, 2014. [Google Scholar]
- Franzen, J.; Müller, M.; Keller, A. Stoffbilanzen für Parzellen der Nationalen Bodenbeobachtung-Nähr-und Schadstoffe 1985–2014. 2016; in prepration. [Google Scholar]
- Schaepman, M.E.; Jehle, M.; Hueni, A.; D’Odorico, P.; Damm, A.; Weyermann, J.; Schneider, F.D.; Laurent, V.; Popp, C.; Seidel, F.C.; et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sens. Environ. 2015, 158, 207–219. [Google Scholar] [CrossRef]
- Hueni, A.; Lenhard, K.; Baumgartner, A.; Schaepman, M.E. Airborne Prism Experiment calibration information system. IEEE Trans. Geosci. Remote Sens. 2013. [Google Scholar] [CrossRef] [Green Version]
- Jehle, M.; Hueni, A.; Damm, A.; D’Odorico, P.; Weyermann, J.; Kneubühler, M.; Schläpfer, D.; Schaepman, M.E.; Meuleman, K. APEX-Current Status, Performance and Validation Concept. In Proceedings of the 2010 IEEE Sensors Conference, Waikoloa, HI, USA, 1–4 November 2010.
- Hueni, A.; Biesemans, J.; Meuleman, K.; Dell’Endice, F.; Schläpfer, D.; Odermatt, D.; Kneubühler, M.; Adriaensen, S.; Kempenaers, S.; Nieke, J.; et al. Structure, components, and interfaces of the airborne prism experiment (APEX) processing and archiving facility. IEEE Trans. Geosci. Remote Sens. 2009, 47, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973.
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects on water content on the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Zakaluk, R.; Sri Ranjan, R. Predicting the leaf water potential of potato plants using RGB reflectance. Can. Biosyst. Eng. 2008, 50, 7.1–7.12. [Google Scholar]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Chabrillat, S.; Eisele, A.; Guillaso, S.; Rogaß, C.; Ben-Dor, E.; Kaufmann, H. HYSOMA: An easy-to-use software interface for soil mapping applications of hyperspectral imagery. In Proceedings of the 7th EARSeL SIG Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011.
- Bundesamt für Landwirtschaft. Feldblockkarte Zum Erosionsrisiko; Bundesamt für Landwirtschaft: Bern, Switzerland, 2014. [Google Scholar]
- Bundesamt für Landestopografie Swisstopo. SwissBUILDINGS3D 1.0; Bundesamt für Landestopografie Swisstopo: Wabern, Switzerland, 2014. [Google Scholar]
- Conel, J.E.; Green, R.O.; Vane, G.; Bruegge, C.J.; Alley, R.E. AIS-2 Radiometry and a Comparison of Methods for the Recovery of Ground Reflectance. In Proceedings of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, USA, 2–4 June 1987.
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Kruse, F.A.; Kierein-Young, K.S.; Boardman, J.W. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer. Photogram. Eng. Remote Sens. 1990, 56, 83–92. [Google Scholar]
- Cook, R.D.; Weisberg, S. Residuals and Influence in Regression; Chapman and Hall: New York, NY, USA, 1982. [Google Scholar]
- Bollen, K.A.; Jackman, R.W. Regression diagnostics: An expository treatment of outliers and influential cases. In Modern Methods of Data Analysis; Fox, J., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1990; pp. 257–291. [Google Scholar]
- Price, J.C. How unique are spectral signatures? Remote Sens. Environ. 1994, 49, 181–186. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Formaggio, A.R. Detection of sandy soil surfaces using ASTER-derived reflectance, emissivity and elevation data: Potential for the identification of land degradation. Int. J. Remote Sens. 2008, 29, 1833–1840. [Google Scholar] [CrossRef]
- Chabrillat, S.; Goetz, A.F.H.; Krosley, L.; Olsen, H.W. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens. Environ. 2002, 82, 431–445. [Google Scholar] [CrossRef]
- Bartholomeus, H.M.; Schaepman, M.E.; Kooistra, L.; Stevens, A.; Hoogmoed, W.B.; Spaargaren, O.S.P. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- Flores, B.E. A pragmatic view of accuracy measurement in forecasting. Omega 1986, 14, 93–98. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 498–520. [Google Scholar] [CrossRef]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA, 2015. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 12 September 2016).
- Cressie, N.A.C. Statistics for Spatial Data; John Wiley & Sons: London, UK, 1993; p. 928. [Google Scholar]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Pebesma, E.J.; Wesseling, C.G. Gstat, a program for geostatistical modelling, prediction and simulation. Comput. Geosci. 1998, 24, 17–31. [Google Scholar] [CrossRef]
- Wold, H. Nonlinear estimation by iterative least square procedures. In Research Papers in Statistics; David, F.N., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1966; pp. 411–444. [Google Scholar]
- Thomas, E.V.; Haaland, D.M. Comparison of multivariate calibration methods for quantitative spectral analysis. Anal. Chem. 1990, 62, 1091–1099. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the Spectral Soil Quality Index (SSQI) using airborne imaging spectroscopy. Remote Sens. 2015, 7, 15748–15781. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Fystro, G. The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using VIS-NIR spectroscopy and comparative methods. Plant Soil 2002, 246, 139–149. [Google Scholar] [CrossRef]
Jan. | Feb. | Mar. | Apr. 1 | May | Jun. | Jul. | Aug. | Sep. 1 | Oct. | Nov. | Dec. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Barley winter | ||||||||||||||
Triticale winter | ||||||||||||||
Wheat winter | ||||||||||||||
Rye winter | ||||||||||||||
Spelt | ||||||||||||||
Maize corn | ||||||||||||||
Maize silage 2 | ||||||||||||||
Rapeseed | ||||||||||||||
Year | No. Pixels | No. Overlapping Pixels |
---|---|---|
2013 | 536,213 1 (1.4% 2|2.9% 3) | 63,066 1 |
2014 | 814,240 1 (2.1% 2|4.4% 3) | |
178,075 1 | ||
2015 | 634,013 1 (1.6% 2|3.4% 3) |
Year | n 1 | ALL 2 | VIS 3 | NIR 4 | SWIR 5 |
---|---|---|---|---|---|
‘13’14 | 54,981 | 2.57 ± 3.42 | 1.32 ± 1.94 | 3.64 ± 3.14 | 3.09 ± 4.31 |
‘15’14 | 154,270 | −2.23 ± 3.77 | −1.34 ± 1.95 | −2.48 ± 4.27 | −2.97 ± 4.56 |
Year | n 1 | D 2 | θ 3 | R2 4 | Offset 4 | Gain 4 |
---|---|---|---|---|---|---|
‘13’14 | 54,981 | 0.33 ± 0.17 | 0.05 ± 0.03 | 0.97 ± 0.03 | −0.29 ± 2.25 | 1.13 ± 0.16 |
‘15’14 | 154,270 | 0.34 ± 0.18 | 0.05 ± 0.03 | 0.98 ± 0.04 | 0.07 ± 2.01 | 0.92 ± 0.17 |
Year | n 1 | ALL 2 | VIS 3 | NIR 4 | SWIR 5 |
---|---|---|---|---|---|
‘13’14 | 54,981 | 0.02 ± 3.04 | 0.02 ± 1.81 | 0.07 ± 2.95 | −0.03 ± 3.98 |
‘15’14 | 154,270 | −0.04 ± 3.34 | −0.01 ± 1.77 | −0.02 ± 3.72 | −0.09 ± 4.19 |
Year | n 1 | D 2 | θ 3 | R2 4 | Offset 4 | Gain 4 |
---|---|---|---|---|---|---|
‘13’14 | 54,981 | 0.22 ± 0.14 | 0.04 ± 0.02 | 0.98 ± 0.03 | 0.07 ± 2.06 | 1.01 ± 0.15 |
‘15’14 | 154,270 | 0.25 ± 0.15 | 0.04 ± 0.03 | 0.98 ± 0.03 | 0.19 ± 2.00 | 1.01 ± 0.17 |
Year | No. Pixels | Increase (2014 = 100%) |
---|---|---|
‘13’14 | 1,287,387 1 (3.3% 2|6.9% 3) | 158.1% |
‘14’15 | 1,270,178 1 (3.2% 2|6.8% 3) | 156.0% |
‘13’15 | 1,082,639 1 (2.7% 2|5.8% 3) | 132.9% |
‘13’14’15 | 1,680,799 1 (4.2% 2|9.0% 3) | 206.4% |
Year | ALL 1 | VIS 2 | NIR 3 | SWIR 4 |
---|---|---|---|---|
2013 | 26.0 ± 9.9 | 14.9 ± 5.3 | 31.0 ± 7.6 | 34.1 ± 6.1 |
2014 | 24.2 ± 8.9 | 13.9 ± 3.7 | 28.4 ± 6.7 | 32.0 ± 6.3 |
2015 | 21.7 ± 8.9 | 12.6 ± 3.7 | 25.4 ± 6.5 | 28.5 ± 5.7 |
‘13’14 | 24.0 ± 9.6 | 13.8 ± 3.8 | 28.1 ± 6.5 | 31.8 ± 5.5 |
‘14’15 | 24.1 ± 9.6 | 13.9 ± 3.5 | 28.3 ± 6.2 | 31.9 ± 5.5 |
‘13’15 | 24.0 ± 9.1 | 14.0 ± 3.5 | 28.2 ± 5.5 | 31.7 ± 3.7 |
‘13’14’15 | 24.0 ± 9.5 | 13.9 ± 3.7 | 28.1 ± 6.2 | 31.8 ± 5.1 |
Year | Field I | Field II | ||
---|---|---|---|---|
Sill | Range | Sill | Range | |
2013 | 8.3 | 69.5 | 31.3 | 685.6 |
2014 | 11.7 | 63.8 | 8.2 | 49.3 |
2015 | 2.8 | 54.9 | 13.6 | 128.9 |
Year | Long Distance | Short Distance | ||
---|---|---|---|---|
Sill | Range | Sill | Range | |
2013 | 87.5 | 312.9 | 64.2 | 95.1 |
2014 | 108.5 | 317.8 | 100.7 | 222.5 |
2015 | 113.2 | 358.1 | 95.2 | 194.4 |
‘13’14 | 100.6 | 266.5 | 98.0 | 195.6 |
‘14’15 | 112.5 | 275.3 | 106.6 | 189.4 |
‘13’15 | 86.9 | 291.9 | 72.7 | 134.0 |
‘13’14’15 | 101.6 | 234.5 | 99.2 | 170.2 |
Sand (%) | Silt (%) | Clay (%) | OM 1 (%) | SM 2 (%) | SMupper 3 (%) |
---|---|---|---|---|---|
32.3 ± 10.0 | 38.2 ± 7.7 | 29.5 ± 11.4 | 10.3 ± 4.5 | 24.3 ± 7.6 | 2.6 ± 2.4 |
Year | No. of Samples 1 | No. of PCs 2 | R 3 ± sd |
---|---|---|---|
‘13 | 12 | 6 | 0.55 ± 0.16 |
‘14 | 41 | 6 | 0.63 ± 0.03 |
‘15 | 73 | 6 | 0.63 ± 0.02 |
‘13’14 | 51 | 7 | 0.61 ± 0.03 |
‘14’15 | 80 | 7 | 0.57 ± 0.02 |
‘13’15 | 75 | 6 | 0.63 ± 0.02 |
‘13’14’15 | 81 | 7 | 0.58 ± 0.02 |
Year | n 1 | NAs 2 | Mean ± sd (%) 3 | Median (%) | IQR (%) 4 | Min–Max (%) |
---|---|---|---|---|---|---|
‘13 | 25061 | 62 | 35.7 ± 11.6 | 36.6 | 28.5–44.0 | 0.4–99.5 |
‘14 | 25061 | 101 | 35.7 ± 11.5 | 36.4 | 29.1–43.9 | 0.0–93.7 |
‘15 | 25061 | 109 | 35.0 ± 11.9 | 34.0 | 26.2–44.4 | 0.0–83.7 |
‘13’14 | 25061 | 352 | 39.3 ± 12.7 | 37.7 | 31.5–44.6 | 0.0–100.0 |
‘14’15 | 25061 | 59 | 35.7 ± 11.6 | 36.6 | 28.6–44.0 | 0.1–90.0 |
‘13’15 | 25061 | 7 | 36.3 ± 11.5 | 36.4 | 29.6–43.8 | 0.4–98.3 |
‘13’14’15 | 25061 | 152 | 34.6 ± 12.4 | 34.2 | 25.9–43.3 | 0.0–82.3 |
FW’14’15 | 89 | 0 | 32.3 ± 10.0 | 29.1 | 25.4–36.9 | 17.8–64.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diek, S.; Schaepman, M.E.; De Jong, R. Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping. Remote Sens. 2016, 8, 906. https://doi.org/10.3390/rs8110906
Diek S, Schaepman ME, De Jong R. Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping. Remote Sensing. 2016; 8(11):906. https://doi.org/10.3390/rs8110906
Chicago/Turabian StyleDiek, Sanne, Michael E. Schaepman, and Rogier De Jong. 2016. "Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping" Remote Sensing 8, no. 11: 906. https://doi.org/10.3390/rs8110906
APA StyleDiek, S., Schaepman, M. E., & De Jong, R. (2016). Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping. Remote Sensing, 8(11), 906. https://doi.org/10.3390/rs8110906