A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations
<p>Different solutions of Example 3: <span class="html-italic">x</span> vs. <span class="html-italic">u<sub>n</sub></span>(<span class="html-italic">x</span>).</p> "> Figure 2
<p>Different solutions of Example 4: <span class="html-italic">x</span> vs. <span class="html-italic">u<sub>n</sub></span>(<span class="html-italic">x</span>).</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Some Definitions and Properties of Fractional Calculus
- (i)
- IμIv = Iμ +v
- (ii)
- IμIv = IvIμ
- (iii)
2.2. Some Properties of Fibonacci Polynomials
3. Construction of the Fibonacci Operational Matrix of the Caputo Fractional Derivative
Introducing a Fibonacci Operational Matrix of Fractional Derivatives
4. Two New Matrix Algorithms for Solving Fractional-Order Differential Equations
4.1. Use of TFMM for Handling Linear Fractional Differential Equations
4.2. Use of CFMM for Handling Nonlinear Fractional Differential Equations
5. Convergence and Error Analysis
- .
- The series converges absolutely.
6. Numerical Tests
- (1)
- The generation of Fibonacci Polynomials is very easy either from the recurrence relation or from the direct definition.
- (2)
- The implementation of Fibonacci polynomials is efficient compared to the orthogonal polynomials in other words. The running time of the “Mathematica” code is very short compared with using the orthogonal polynomials.
- (3)
- The speed of convergence of Fibonacci polynomials (inverse factorial rate of convergence) is very efficient. Theorem 2 ensures this result.
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: Singapore, 2000. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 2007, 189, 541–548. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 2007, 207, 96–110. [Google Scholar] [CrossRef]
- Çenesiz, Y.; Keskin, Y.; Kurnaz, A. The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J. Frankl. Inst. 2010, 347, 452–466. [Google Scholar] [CrossRef]
- Das, S. Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 2009, 57, 483–487. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Khader, M.M.; Nagy, A.M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 2011, 235, 2832–2841. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.H. New spectral solutions of multi-term fractional-order initial value problems with error analysis. Comput. Model. Eng. Sci. 2015, 105, 375–398. [Google Scholar]
- Abd-Elhameed, W.M.; Youssri, Y.H. New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abstr. Appl. Anal. 2014, 2014, 626275. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Nagy, A.M.; El-Sayed, A.A. Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Soliton Fractals 2015, 73, 141–147. [Google Scholar] [CrossRef]
- Khader, M.M.; Sweilam, N.H. On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method. Appl. Math. Model. 2013, 37, 9819–9828. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Bassuony, M.A. New algorithms for solving high even-order differential equations using third and fourth Chebyshev–Galerkin methods. J. Comput. Phys. 2013, 236, 563–579. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Bassuony, M.A. On the coefficients of differentiated expansions and derivatives of Chebyshev polynomials of the third and fourth kinds. Acta Math. Sci. 2015, 35, 326–338. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M. Efficient solutions of multidimensional sixth-order boundary value problems using symmetric generalized Jacobi-Galerkin method. Abstr. Appl. Anal. 2012, 2012, 749370. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Doha, E.H.; Youssri, Y.H. Efficient spectral-Petrov-Galerkin methods for third-and fifth-order differential equations using general parameters generalized Jacobi polynomials. Quaest. Math. 2013, 36, 15–38. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M. On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. Comput. Model. Eng. Sci. 2014, 101, 159–185. [Google Scholar]
- Abd-Elhameed, W.M. New Galerkin operational matrix of derivatives for solving Lane–Emden singular type equations. Eur. Phys. J. Plus 2015, 130. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H. Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane–Emden type. New Astron. 2013, 23–24, 113–117. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59, 1326–1336. [Google Scholar] [CrossRef]
- Rostamy, D.; Alipour, M.; Jafari, H.; Baleanu, D. Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis. Rom. Rep. Phys. 2013, 65, 334–349. [Google Scholar]
- Kazem, S. An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl. Math. Model. 2013, 37, 1126–1136. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, W.; Wang, H. Some results on convolved (p,q)-Fibonacci polynomials. Integral Transforms Spec. Funct. 2015, 26, 340–356. [Google Scholar] [CrossRef]
- Zhang, W. On Chebyshev polynomials and Fibonacci numbers. Fibonacci Q. 2002, 40, 424–428. [Google Scholar]
- Gulec, H.H.; Taskara, N.; Uslu, K. A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients. Appl. Math. Comput. 2013, 220, 482–486. [Google Scholar] [CrossRef]
- Koc, A.B.; Cakmak, M.; Kurnaz, A.; Uslu, K. A new Fibonacci type collocation procedure for boundary value problems. Adv. Differ. Equ. 2013, 2013, 262. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, S.F. Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations. Appl. Math. Comput. 2016, 273, 637–644. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Dover Publications: Mineola, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Falcon, S.; Plaza, A. On k-Fibonacci sequences and polynomials and their derivatives. Chaos Soliton Fractals 2009, 39, 1005–1019. [Google Scholar] [CrossRef]
- Rehman, M.; Khan, R.A. The Legendre wavelet method for solving fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4163–4173. [Google Scholar] [CrossRef]
- Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. Bernoulli wavelet operational matrix of fractional-order integration and its applications in solving the fractional-order differential equations. Appl. Math. Model. 2014, 38, 6038–6051. [Google Scholar] [CrossRef]
- Byrd, P.F. Expansion of analytic functions in polynomials associated with Fibonacci numbers. Fibonacci Q. 1963, 1, 16–27. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications: Mineola, NY, USA, 1964; p. 1046. [Google Scholar]
- Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1972, 5, 41–65. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan: London, UK, 1960; p. 365. [Google Scholar]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62, 2364–2373. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 2011, 35, 5662–5672. [Google Scholar] [CrossRef]
- Wang, Y.G.; Song, H.F.; Li, D. Solving two-point boundary value problems using combined homotopy perturbation method and Green’s function method. Appl. Math. Comput. 2009, 212, 366–376. [Google Scholar] [CrossRef]
- Maleknejad, K.; Torkzadeh, L. Application of hybrid functions for solving oscillator equations. Rom. J. Phys. 2015, 60, 87–98. [Google Scholar]
n | α = 1 | α = 4π | ||||
---|---|---|---|---|---|---|
TFMM | CFMM | CSM [38] | TFMM | CFMM | CSM [38] | |
4 | 1.0 × 10−4 | 3.4 × 10−5 | 3.4 × 10−4 | 7.2 × 10−3 | 8.2 × 10−4 | 3.9 × 100 |
8 | 9.1 × 10−7 | 2.7 × 10−8 | 4.3 × 10−7 | 5.8 × 10−6 | 1.5 × 10−6 | 4.7 × 10−1 |
16 | 5.3 × 10−12 | 4.9 × 10−13 | 1.8 × 10−8 | 5.7 × 10−11 | 7.4 × 10−13 | 3.5 × 10−5 |
32 | 6.2 × 10−14 | 9.8 × 10−16 | 7.1 × 10−10 | 2.6 × 10−13 | 2.2 × 10−14 | 1.4 × 10−6 |
x | [39] | [32] | TFMM | Exact |
---|---|---|---|---|
0.1 | 0.05934820 | 0.05934383 | 0.05934303 | 0.05934303 |
0.2 | 0.05934820 | 0.11013431 | 0.11013421 | 0.11013421 |
0.3 | 0.11014318 | 0.15102443 | 0.15102441 | 0.15102441 |
0.4 | 0.15103441 | 0.18047562 | 0.18047535 | 0.18047535 |
0.5 | 0.19673826 | 0.19673476 | 0.19673467 | 0.19673467 |
0.6 | 0.19780653 | 0.19780804 | 0.19780797 | 0.19780797 |
0.7 | 0.18142196 | 0.18142748 | 0.18142725 | 0.18142725 |
0.8 | 0.14500893 | 0.14501561 | 0.14501540 | 0.14501540 |
0.9 | 0.08564186 | 0.08564683 | 0.08564632 | 0.08564632 |
n | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
---|---|---|---|---|---|---|---|
Error | 5.2 × 10−3 | 2.0 × 10−6 | 3.4 × 10−8 | 5.9 × 10−10 | 4.7 × 10−12 | 1.6 × 10−14 | 1.2 × 10−16 |
x | [40] n = 6 | [40] n = 15 | Runge–Kutta | CFMM n = 6 | CFMM n = 10 |
---|---|---|---|---|---|
0.1 | 0.000149 | 0.000119 | 0.000109 | 0.000108 | 0.000109 |
0.2 | 0.001000 | 0.000894 | 0.000876 | 0.000878 | 0.000876 |
0.3 | 0.003113 | 0.002980 | 0.002953 | 0.002958 | 0.002953 |
0.4 | 0.007227 | 0.007022 | 0.006987 | 0.006983 | 0.006987 |
0.5 | 0.013976 | 0.013647 | 0.013603 | 0.013607 | 0.013603 |
0.6 | 0.023709 | 0.023454 | 0.023403 | 0.023405 | 0.023403 |
0.7 | 0.037322 | 0.037010 | 0.036952 | 0.036952 | 0.036952 |
0.8 | 0.055164 | 0.054838 | 0.054775 | 0.054774 | 0.054775 |
0.9 | 0.077783 | 0.077416 | 0.077348 | 0.077347 | 0.077348 |
x | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|
[40] n = 120 | 2.36 × 10−7 | 8.15 × 10−7 | 1.54 × 10−6 | 2.42 × 10−6 | 3.42 × 10−6 |
TFMM n = 12 | 2.57 × 10−10 | 3.22 × 10−10 | 5.27 × 10−10 | 9.58 × 10−10 | 7.81 × 10−10 |
x | γ = 0.1 | γ = 0.5 | ||||
---|---|---|---|---|---|---|
[40] | Runge–Kutta | CFMM | [40] | Runge–Kutta | CFMM | |
0.1 | 0.994977 | 0.995021 | 0.995021 | 0.995047 | 0.995086 | 0.995086 |
0.2 | 0.980157 | 0.980198 | 0.980198 | 0.980681 | 0.980712 | 0.980712 |
0.3 | 0.955739 | 0.955775 | 0.955775 | 0.957446 | 0.957468 | 0.957468 |
0.4 | 0.922054 | 0.922085 | 0.922085 | 0.925977 | 0.925992 | 0.925992 |
0.5 | 0.879519 | 0.879543 | 0.879543 | 0.886946 | 0.886953 | 0.886953 |
0.6 | 0.828629 | 0.828646 | 0.828646 | 0.841048 | 0.841046 | 0.841046 |
0.7 | 0.769953 | 0.769962 | 0.769962 | 0.788998 | 0.788988 | 0.788988 |
0.8 | 0.704126 | 0.704126 | 0.704126 | 0.731528 | 0.731510 | 0.731510 |
0.9 | 0.631845 | 0.631835 | 0.631835 | 0.669382 | 0.669356 | 0.669356 |
n | 14 | 16 | 18 | 20 | 22 | 24 | |
---|---|---|---|---|---|---|---|
LSTM | E | 2.3 × 10−4 | 3.7 × 10−6 | 6.5 × 10−8 | 3.8 × 10−10 | 6.2 × 10−12 | 9.1 × 10−15 |
t | 37.407 | 45.781 | 61.573 | 70.594 | 86.247 | 107.241 | |
TFMM | E | 6.5 × 10−5 | 8.1 × 10−8 | 9.7 × 10−10 | 6.2 × 10−12 | 2.9 × 10−14 | 3.7 × 10−16 |
t | 28.891 | 36.212 | 39.847 | 48.827 | 63.952 | 74.528 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elhameed, W.M.; Youssri, Y.H. A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations. Entropy 2016, 18, 345. https://doi.org/10.3390/e18100345
Abd-Elhameed WM, Youssri YH. A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations. Entropy. 2016; 18(10):345. https://doi.org/10.3390/e18100345
Chicago/Turabian StyleAbd-Elhameed, Waleed M., and Youssri H. Youssri. 2016. "A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations" Entropy 18, no. 10: 345. https://doi.org/10.3390/e18100345
APA StyleAbd-Elhameed, W. M., & Youssri, Y. H. (2016). A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations. Entropy, 18(10), 345. https://doi.org/10.3390/e18100345