[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ras proteins: different signals from different locations

Key Points

  • H-ras and N-ras traffic through the Golgi to the plasma membrane, whereas K-ras traffics through the cytosol.

  • H-ras and K-ras localize to spatially distinct microdomains of the plasma membrane, yielding new insights into plasma-membrane microstructure.

  • H-ras and K-ras interaction with these microdomains is dynamic and in the case of H-ras is regulated by GTP-loading. Signal output from these different microdomains also varies.

  • N-ras and H-ras are stably expressed on Golgi membranes in addition to plasma membrane. H-ras and K-ras have also been identified on endosomal membranes.

  • Ras is activated on Golgi membranes in response to cell-surface growth-factor activation.

  • Ras proteins on endomembranes have distinct signal outputs that might contribute to their isoform-specific functions.

  • Biological differences between the Ras proteins can probably be explained by their distinct membrane microenvironments.

Abstract

Ras signalling has classically been thought to occur exclusively at the inner surface of a relatively uniform plasma membrane. Recent studies have shown that Ras proteins interact dynamically with specific microdomains of the plasma membrane as well as with other internal cell membranes. These different membrane microenvironments modulate Ras signal output and highlight the complex interplay between Ras location and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of the Ras proteins.
Figure 2: Membrane trafficking of mammalian Ras proteins.
Figure 3: Plasma-membrane microlocalization of H-ras and K-ras.
Figure 4: K-ras and H-ras occupy distinct non-raft microdomains.
Figure 5: Signalling to endomembrane-localized Ras.

Similar content being viewed by others

References

  1. Ehrhardt, A., Ehrhardt, G. R., Guo, X. & Schrader, J. W. Ras and relatives — job sharing and networking keep an old family together. Exp. Hematol. 30, 1089–1106 (2002).

    CAS  PubMed  Google Scholar 

  2. Umanoff, H., Edelmann, W., Pellicer, A. & Kucherlapati, R. The murine N-ras gene is not essential for growth and development. Proc. Natl Acad. Sci. USA 92, 1709–1713 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Koera, K. et al. K-Ras is essential for the development of the mouse embryo. Oncogene 15, 1151–1159 (1997).

    CAS  PubMed  Google Scholar 

  5. Esteban, L. M. et al. Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol. Cell. Biol. 21, 1444–1452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    CAS  PubMed  Google Scholar 

  7. Voice, J., Klemke, R., Le, A. & Jackson, J. Four human Ras homologs differ in their ability to activate Raf-1, induce transformation and stimulate cell motility. J. Biol. Chem. 274, 17164–17170 (1999).

    CAS  PubMed  Google Scholar 

  8. Hamilton, M. & Wolfman, A. Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo. Oncogene 16, 1417–1428 (1998).

    CAS  PubMed  Google Scholar 

  9. Wolfman, J. & Wolfman, A. Endogenous c-N-Ras provides a steady-state anti-apoptotic signal. J. Biol. Chem. 275, 19315–19323 (2000).

    CAS  PubMed  Google Scholar 

  10. Walsh, A. B. & Bar-Sagi, D. Differential activation of the Rac pathway by Ha-Ras and K-Ras. J. Biol. Chem. 276, 15609–15615 (2001).

    CAS  PubMed  Google Scholar 

  11. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  12. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. & Lowy, D. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583–586 (1984).

    CAS  PubMed  Google Scholar 

  13. Gutierrez, L., Magee, A. I., Marshall, C. J. & Hancock, J. F. Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J. 8, 1093–1098 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    CAS  PubMed  Google Scholar 

  15. Casey, P. J., Solski, P. A., Der, C. J. & Buss, J. E. p21ras is modified by a farnesyl isoprenoid. Proc. Natl Acad. Sci. USA 86, 8323–8327 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. & Brown, M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62, 81–88 (1990).

    CAS  PubMed  Google Scholar 

  17. Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997).

    CAS  PubMed  Google Scholar 

  18. Kim, E. et al. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J. Biol. Chem. 274, 8383–8390 (1999).

    CAS  PubMed  Google Scholar 

  19. Otto, J. C., Kim, E., Young, S. G. & Casey, P. J. Cloning and characterization of a mammalian prenyl protein-specific protease. J. Biol. Chem. 274, 8379–8382 (1999).

    CAS  PubMed  Google Scholar 

  20. Hrycyna, C. A., Sapperstein, S. K., Clarke, S. & Michaelis, S. The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J. 10, 1699–1709 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    CAS  PubMed  Google Scholar 

  22. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    CAS  PubMed  Google Scholar 

  23. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 (1990).

    CAS  PubMed  Google Scholar 

  24. Hancock, J. F., Cadwallader, K., Paterson, H. & Marshall, C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10, 4033–4039 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20, 2475–2487 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergo, M. O. et al. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-ras in mammalian cells. J. Biol. Chem. 23, 17605–17610 (2000).

    Google Scholar 

  27. Bergo, M. O. et al. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem. 276, 5841–5845 (2001).

    CAS  PubMed  Google Scholar 

  28. Bergo, M. O. et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol. Cell. Biol. 22, 171–181 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartels, D. J., Mitchell, D. A., Dong, X. & Deschenes, R. J. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6775–6787 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lobo, S., Greentree, W. K., Linder, M. E. & Deschenes, R. J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273 (2002). The first description of a Ras palmitoyltransferase, which was identified using an elegant yeast genetic screen after unsuccessful attempts by many groups at biochemical purification.

    CAS  PubMed  Google Scholar 

  31. Zhao, L., Lobo, S., Dong, X., Ault, A. D. & Deschenes, R. J. Erf4p and Erf2p form an endoplasmic reticulum-associated complex involved in the plasma membrane localization of yeast Ras proteins. J. Biol. Chem. 277, 49352–49359 (2002).

    CAS  PubMed  Google Scholar 

  32. Jung, V., Chen, L., Hofmann, S. L., Wigler, M. & Powers, S. Mutations in the SHR5 gene of Saccharomyces cerevisiae suppress Ras function and block membrane attachment and palmitoylation of Ras proteins. Mol. Cell. Biol. 15, 1333–1342 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Michaelson, D., Ahearn, I., Bergo, M., Young, S. & Philips, M. Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell 13, 3294–3302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roy, M. -O., Leventis, R. & Silvius, J. Mutational and biochemical analysis of plasma membrane targeting mediated by the farnesylated, polybasic carboxy terminus of K-ras4B. Biochemistry 39, 8298–8307 (2000).

    CAS  PubMed  Google Scholar 

  35. Thissen, J., Gross, J., Subramanian, K., Meyer, T. & Casey, P. Prenylation dependent association of Ki-Ras with microtubules. J. Biol. Chem. 272, 30367–30370 (1997).

    Google Scholar 

  36. Chen, Z., Otto, J. C., Bergo, M. O., Young, S. G. & Casey, P. J. The C-terminal polylysine region and methylation of K-ras are critical for the interaction between K-ras and microtubules. J. Biol. Chem. 275, 41251–41257 (2000).

    CAS  PubMed  Google Scholar 

  37. Willumsen, B. M., Cox, A. D., Solski, P. A., Der, C. J. & Buss, J. E. Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene 13, 1901–1909 (1996).

    CAS  PubMed  Google Scholar 

  38. Kanaani, J. et al. A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65. J. Cell Biol. 158, 1229–1238 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Magee, A. I., Gutierrez, L., McKay, I. A., Marshall, C. J. & Hall, A. Dynamic fatty acylation of p21N-ras. EMBO J. 6, 3353–3357 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baker, T. L., Booden, M. A. & Buss, J. E. S-Nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells. J. Biol. Chem. 275, 22037–22047 (2000).

    CAS  PubMed  Google Scholar 

  41. Schroeder, H. et al. S-Acylation and plasma membrane targeting of the farnesylated carboxyl-terminal peptide of N-ras in mammalian fibroblasts. Biochemistry 36, 13102–13109 (1997).

    CAS  PubMed  Google Scholar 

  42. Wedegaertner, P. B. & Bourne, H. R. Activation and depalmitoylation of Gsα . Cell 77, 1063–1070 (1994).

    CAS  PubMed  Google Scholar 

  43. Tu, Y., Wang, J. & Ross, E. M. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein α subunits. Science 278, 1132–1135 (1997).

    CAS  PubMed  Google Scholar 

  44. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  45. Iwabuchi, K., Handa, K. & Hakomori, S. Separation of 'glycosphingolipid signaling domain' from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273, 33766–33773 (1998).

    CAS  PubMed  Google Scholar 

  46. Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. & Brown, D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. J. Biol. Chem. 274 (1999).

  47. Mineo, C., James, G. L., Smart, E. J. & Anderson, R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271, 11930–11935 (1996).

    CAS  PubMed  Google Scholar 

  48. Furuchi, T. & Anderson, R. G. W. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (Erk). J. Biol. Chem. 273, 21099–21104 (1998).

    CAS  PubMed  Google Scholar 

  49. Song, S. K. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    CAS  PubMed  Google Scholar 

  50. Liu, P., Ying, Y. & Anderson, R. G. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc. Natl Acad. Sci. USA 94, 13666–13670 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biol. 3, 368–375 (2001).

    CAS  PubMed  Google Scholar 

  52. Chen, X. & Resh, M. D. Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization. J. Biol. Chem. 276, 34617–34623 (2001).

    CAS  PubMed  Google Scholar 

  53. Jaumot, M., Yan, J., Clyde-Smith, J., Sluimer, J. & Hancock, J. F. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 277, 272–278 (2002).

    CAS  PubMed  Google Scholar 

  54. Prior, I. A. & Hancock, J. F. Compartmentalization of Ras proteins. J. Cell Sci. 114, 1603–1608 (2001).

    CAS  PubMed  Google Scholar 

  55. Watson, R. T. et al. The exocytotic trafficking of TC10 occurs through both classical and nonclassical secretory transport pathways in 3T3L1 adipocytes. Mol. Cell. Biol. 23, 961–974 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002). A comprehensive comparison of the plasma-membrane interactions of Ras proteins using FRAP. It concludes that activated H-ras and K-ras interact dynamically with different non-raft membrane microdomains.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003). Electron microscopy of intact plasma-membrane sheets shows that activated H-ras and K-ras occupy different, spatially discrete non-raft microdomains and only inactive H-ras is significantly localized to lipid rafts.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Arbuzova, A. et al. Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. J. Biol. Chem. 272, 27167–27177 (1997).

    CAS  PubMed  Google Scholar 

  59. Murray, D. et al. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys. J. 77, 3176–3188 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, J. et al. Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J. Biol. Chem. 277, 34401–34412 (2002).

    CAS  PubMed  Google Scholar 

  61. Villalonga, P. et al. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol. Cell. Biol. 21, 7345–7354 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Villalonga, P. et al. Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J. Biol. Chem. 277, 37929–37935 (2002).

    CAS  PubMed  Google Scholar 

  63. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001). Evidence that galectin-1 selectively interacts with the carboxyl terminus of activated H-ras and contributes to plasma-membrane binding. Galectin-1 has subsequently been shown to be involved in the formation of an H-ras non-raft microdomain.

    CAS  PubMed  Google Scholar 

  64. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  Google Scholar 

  65. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H. J. & Kloog, Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277, 37169–37175 (2002).

    CAS  PubMed  Google Scholar 

  66. Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The δ subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277, 15076–15084 (2002).

    CAS  PubMed  Google Scholar 

  67. Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R. C. The complex of Arl2-GTP and PDE δ: from structure to function. EMBO J. 21, 2095–2106 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitchell, D. A., Farh, L., Marshall, T. K. & Deschenes, R. J. A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J. Biol. Chem. 269, 21540–21546 (1994).

    CAS  PubMed  Google Scholar 

  69. Booden, M. A. et al. A non-farnesylated Ha-Ras protein can be palmitoylated and trigger potent differentiation and transformation. J. Biol. Chem. 274, 1423–1431 (1999).

    CAS  PubMed  Google Scholar 

  70. Coats, S. G., Booden, M. A. & Buss, J. E. Transient palmitoylation supports H-Ras membrane binding but only partial biological activity. Biochemistry 38, 12926–12934 (1999).

    CAS  PubMed  Google Scholar 

  71. Booden, M. A., Sakaguchi, D. S. & Buss, J. E. Mutation of Ha-Ras C terminus changes effector pathway utilization. J. Biol. Chem. 275, 23559–23568 (2000).

    CAS  PubMed  Google Scholar 

  72. Carozzi, A. J. et al. Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. J. Biol. Chem. 277, 17944–17949 (2002).

    CAS  PubMed  Google Scholar 

  73. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    CAS  PubMed  Google Scholar 

  74. Watson, R. T. et al. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J. Cell Biol. 154, 829–840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiang, S. H. et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001).

    CAS  PubMed  Google Scholar 

  76. Kabouridis, P. S., Janzen, J., Magee, A. L. & Ley, S. C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur. J. Immunol. 30, 954–963 (2000).

    CAS  PubMed  Google Scholar 

  77. Jiang, X. & Sorkin, A. Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol. Biol. Cell 13, 1522–1535 (2002). This study provides elegant and compelling evidence that Ras proteins enter the endocytic pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001).

    CAS  PubMed  Google Scholar 

  79. Rizzo, M. A., Kraft, C. A., Watkins, S. C., Levitan, E. S. & Romero, G. Agonist-dependent traffic of raft-associated Ras and Raf-1 is required for activation of the mitogen-activated protein kinase cascade. J. Biol. Chem. 276, 34928–34933 (2001).

    CAS  PubMed  Google Scholar 

  80. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    CAS  PubMed  Google Scholar 

  81. York, R. D. et al. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell. Biol. 20, 8069–8083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ohba, Y., Kurokawa, K. & Matsuda, M. Mechanism of the spatio-temporal regulation of Ras and Rap1. EMBO J. 22, 859–869 (2003). Using FRET probes to monitor Rap1 and Ras activation in real time, the authors derived a mathematical model to account for spatial and temporal differences in Ras and Rap1 activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343–350 (2002). An intriguing study showing that Golgi-localized Ras is activated by cell-surface growth-factor receptors and is competent to activate effector pathways.

    CAS  PubMed  Google Scholar 

  84. Tognon, C. E. et al. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol. Cell. Biol. 18, 6995–7008 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium and diacylglycerol binding motifs. Science 280, 1082–1086 (1998).

    CAS  PubMed  Google Scholar 

  86. Lorenzo, P. S. et al. Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res. 61, 943–949 (2001).

    CAS  PubMed  Google Scholar 

  87. Lockyer, P. J., Kupzig, S. & Cullen, P. J. CAPRI regulates Ca2+-dependent inactivation of the Ras-MAPK pathway. Curr. Biol. 11, 981–986 (2001).

    CAS  PubMed  Google Scholar 

  88. Cadwallader, K., Paterson, H., Macdonald, S. G. & Hancock, J. F. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell. Biol. 14, 4722–4730 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dudler, T. & Gelb, M. H. Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes. J. Biol. Chem. 271, 11541–11547 (1996).

    CAS  PubMed  Google Scholar 

  90. Hart, K. C. & Donoghue, D. J. Derivatives of activated H-ras lacking C-terminal lipid modifications retain transforming ability if targeted to the correct subcellular location. Oncogene 14, 945–953 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    CAS  PubMed  Google Scholar 

  92. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    CAS  PubMed  Google Scholar 

  93. Pol, A., Calvo, M. & Enrich, C. Isolated endosomes from quiescent rat liver contain the signal transduction machinery. Differential distribution of activated Raf-1 and Mek in the endocytic compartment. FEBS Lett. 441, 34–38 (1998).

    CAS  PubMed  Google Scholar 

  94. Rizzo, M. A., Shome, K., Watkins, S. C. & Romero, G. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J. Biol. Chem. 275, 23911–23918 (2000).

    CAS  PubMed  Google Scholar 

  95. Burke, P., Schooler, K. & Wiley, H. S. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol. Biol. Cell 12, 1897–1910 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haugh, J. M., Huang, A. C., Wiley, H. S., Wells, A. & Lauffenburger, D. A. Internalized epidermal growth factor receptors participate in the activation of p21ras in fibroblasts. J. Biol. Chem. 274, 34350–34360 (1999).

    CAS  PubMed  Google Scholar 

  97. Hekman, M. et al. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts. J. Biol. Chem. 277, 24090–24102 (2002).

    CAS  PubMed  Google Scholar 

  98. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    CAS  PubMed  Google Scholar 

  99. Ceresa, B. P., Kao, A. W., Santeler, S. R. & Pessin, J. E. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol. Cell. Biol. 18, 3862–3870 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).

    CAS  PubMed  Google Scholar 

  101. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell. Biol. 3, 600–614 (2002).

    CAS  Google Scholar 

  102. Roy, S., Wyse, B. & Hancock, J. F. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol. Cell. Biol. 22, 5128–5140 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, L. & Colicelli, J. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol. Cell. Biol. 15, 1318–1323 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tall, G. G., Barbieri, M. A., Stahl, P. D. & Horazdovsky, B. F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    CAS  PubMed  Google Scholar 

  105. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    CAS  PubMed  Google Scholar 

  106. Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Localization of the src gene product of the Harvey strain of MSV to the plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19, 1005–1010 (1980).

    CAS  PubMed  Google Scholar 

  107. Jones, M. K. & Jackson, J. H. Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J. Biol. Chem. 273, 1782–1787 (1998).

    CAS  PubMed  Google Scholar 

  108. Clyde-Smith, J. et al. Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J. Biol. Chem. 275, 32260–32267 (2000).

    CAS  PubMed  Google Scholar 

  109. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jaumot, M. & Hancock, J. F. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20, 3949–3958 (2001).

    CAS  PubMed  Google Scholar 

  111. Kubicek, M. et al. Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J. Biol. Chem. 277, 7913–7919 (2002).

    CAS  PubMed  Google Scholar 

  112. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Clark, G. J. et al. 14-3-3ζ negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J. Biol. Chem. 272, 20990–20993 (1997).

    CAS  PubMed  Google Scholar 

  114. McPherson, R. A., Harding, A., Roy, S., Lane, A. & Hancock, J. F. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene 18, 3862–3869 (1999).

    CAS  PubMed  Google Scholar 

  115. Marais, R., Light, Y., Paterson, H. F., Mason, C. S. & Marshall, C. J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383 (1997).

    CAS  PubMed  Google Scholar 

  116. Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442–2451 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Suire, S., Hawkins, P. & Stephens, L. Activation of phosphoinositide 3-kinase γ by ras. Curr. Biol. 12, 1068–1075 (2002).

    CAS  PubMed  Google Scholar 

  118. Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    CAS  PubMed  Google Scholar 

  119. Smart, E. J., Ying, Y. S., Mineo, C. & Anderson, R. G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl Acad. Sci. USA 92, 10104–10108 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Regulating c-Ras function: cholesterol depletion affects caveolin association, GTP loading, and signaling. Curr. Biol. 11, 1880–1884 (2001).

    CAS  PubMed  Google Scholar 

  121. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pyenta, P. S., Holowka, D. & Baird, B. Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys. J. 80, 2120–2132 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wilson, B. S., Pfeiffer, J. R., Surviladze, Z., Gaudet, E. A. & Oliver, J. M. High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT. J. Cell Biol. 154, 645–658 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Parton, R. G. & Hancock, J. F. Caveolin and Ras function. Meth. Enzymol. 333, 172–183 (2001).

    CAS  Google Scholar 

  125. Niv, H., Gutman, O., Henis, Y. I. & Kloog, Y. Membrane interactions of constitutively active GFP-Ki-Ras4B and their role in signaling. J. Biol. Chem. 274, 1606–1613 (1998).

    Google Scholar 

  126. Bondeva, T., Balla, A., Varnai, P. & Balla, T. Structural determinants of ras–raf interaction analyzed in live cells. Mol. Biol. Cell 13, 2323–2333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank R. Parton and I. Prior for their helpful comments on the manuscript, and M. Philips and A. Pellicer for sharing data before publication. J.F.H. is supported by grants from the National Health and Medical Research Council, Australia, and the Queensland Cancer Fund. The Institute for Molecular Bioscience is a special research centre of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Rab5

Sar1

Sos

Swiss-Prot

Arf1

Arl2

Arl3

B-Raf

CAPRI

GAD65

galectin-1

Grb2

H-ras

K-ras4A

K-ras4B

N-ras

Raf-1

Rap1A

Rheb

RhoGDI

Rho6

Rin1

Shc

TC10

TrkA

FURTHER INFORMATION

John F. Hancock's laboratory

Glossary

HYPERVARIABLE DOMAIN

The carboxy-terminal 25 amino acids of H-ras, N-ras and K-Ras proteins, in which sequence homology is less than 15% between any two isoforms, compared with 90–100% over the amino-terminal sequences.

CAAX MOTIF

(where C is cysteine, A is aliphatic and X is any amino acid). A carboxy-terminal tetrapeptide that is common to all Ras proteins. It directs a triplet of post-translational modifications.

FRET

(fluorescence resonance energy transfer). The fluorescence energy that is transferred from one fluor excites a neighbouring fluor that then re-emits the energy at a third wavelength. Transfer occurs only if the two fluors are close, so FRET can be used to monitor real-time protein–protein interactions in living cells.

PHOTOBLEACHING

The irreversible destruction, by any one of several different mechanisms, of a fluorophore that is under illumination.

FRAP

(fluorescence recovery after photobleaching). The time taken for a bleached area of membrane to re-fluoresce. FRAP can be used to calculate the lateral mobility of a green fluorescent protein (GFP)-tagged membrane-associated protein on the condition that recovery does not occur by exchange with a soluble pool of protein.

MICRODOMAINS

Sites within the plasma membrane that have a distinct lipid and/or protein composition.

PALMITOYLATION

The post-translational modification of a protein with palmitic acid. On Ras proteins, palmitic acid is attached as a thioester to the thiol (–SH) group of cysteine residues (this is known as S-acylation).

BREFELDIN A

A reagent that is used to disassemble the Golgi, probably by inhibiting the GTP-loading of ADP-ribosylation factor. In sensitive cells the Golgi is dispersed and trafficking of proteins through the exocytic pathway is inhibited.

DOMINANT-NEGATIVE

A defective protein that retains interaction abilities and so distorts or competes with normal proteins.

RHO FAMILY PROTEINS

Ras-related GTPases that are involved in controlling the polymerization of actin.

TAXOL

An antitumour agent that enhances the polymerization of tubulin and the subsequent stabilization of microtubules, thereby inhibiting mitosis and blocking the cell cycle.

LIPID RAFTS

The biophysical properties of certain long-chain saturated fatty acids packed together with cholesterol drive the spontaneous formation of small, relatively stable, structures that are known as lipid rafts. Lipid rafts phase separate from the more loosely packed phospholipids of the membrane bilayer.

LIQUID-ORDERED

A term that is used to describe the tightly packed molecular structure of a lipid raft: an intermediate physical state between fluid and gel.

DISORDERED PLASMA MEMBRANE

Plasma membrane that is not organized in liquid-ordered lipid rafts.

RAB PROTEINS

Rab proteins form the largest subfamily of small GTPases of the Ras superfamily. They regulate budding, tethering, fusion and motility at various sites within cells.

YEAST TWO-HYBRID APPROACH

A technique that is used to test if two proteins physically interact with each other. One protein is fused to the GAL4 activation domain and the other to the GAL4 DNA-binding domain, and both fusion proteins are introduced into yeast. Expression of a GAL4-regulated reporter gene indicates that the two proteins physically interact.

PC12 CELLS

A clonal line of rat adrenal pheochromocytoma cells that, much like sympathetic neurons, respond to nerve growth factor and can synthesize, store and secrete catecholamines. PC12 cells contain small, clear synaptic-like vesicles and larger dense core granules.

COS CELLS

Cells from the monkey CV1 cell line that have an integrated SV40 genome lacking an origin of replication. Plasmids with an SV40 origin of replication are replicated to a high copy number when transfected.

ENDOMEMBRANE SYSTEM

A hypothetical integrated membrane system of eukaryotic cells that represents a developmental and functional continuum. It comprises the endoplasmic reticulum, nuclear membrane, Golgi apparatus and vesicles.

NIH3T3 FOCUS ASSAY

This assay measures the transforming potency of an oncogene. The growth of NIH3T3 cells arrests as a continuous monolayer, but transformed cells do not arrest and grow over the adjacent monolayer as a focus of clonal cells.

EEA1

The antigen that is involved in a human autoimmune disease. It is a marker of the early endosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hancock, J. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4, 373–385 (2003). https://doi.org/10.1038/nrm1105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1105

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing