[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions

A Corrigendum to this article was published on 01 September 2010

This article has been updated

Abstract

Colloidal platinum nanoparticles with diameters of 2–5 nm on carbon supports are currently regarded as the best catalysts for the oxygen reduction reaction. However, the particle size is limited by the conventional preparation methods that are used to synthesize small platinum particles; the inherent activity of ultrasmall nanoparticles has not yet been revealed. We present a practical synthesis for ultrafine subnanometre platinum clusters using a spherical macromolecular template with no disorder in molecular weight or structure. The template, a phenylazomethine dendrimer, offers control of the number of metal complexes in an assembly through stepwise complexation, allowing the complexes to accumulate in discrete nano-cages. Subsequent reduction of Pt(IV) chloride to Pt(0) results in the formation of platinum clusters composed of a defined number of atoms. As a result of exceptionally small particle size, the clusters exhibit very high catalytic activity for the four-electron reduction of oxygen molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenylazomethine dendrimers as a template for metal cluster assembly.
Figure 2: Schematic representation of platinum cluster synthesis.
Figure 3: Electrochemical reduction of O2 using electrodes modified with platinum clusters as catalysts.

Similar content being viewed by others

Change history

  • 23 August 2010

    In the version of this Article originally published, the descriptions about data analysis of the electrocatalysis in the Methods section were incorrect. This has been corrected in the HTML and PDF versions of the Article.

References

  1. Steele, B. C. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  2. Adlhart, C. & Uggerud, E. Reactions of platinum clusters Ptn±, n = 1–21, with CH4: to react or not to react. Chem. Commun. 2581–2582 (2006).

  3. Sun, Y., Zhuang, L., Lu, J., Hong, X. & Liu, P. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm. J. Am. Chem. Soc. 129, 15465–15467 (2007).

    Article  CAS  Google Scholar 

  4. Verde, Y. et al. Active area and particle size of Pt particles synthesized from (NH4)2PtCl6 on a carbon support. Catal. Today 107–108, 826–830 (2005).

    Article  Google Scholar 

  5. Raimondi, F., Scherer, G. G., Köz, R. & Wokaun, A. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew. Chem. Int. Ed. 44, 2190–2209 (2005).

    Article  CAS  Google Scholar 

  6. Ferreira, P. J. et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J. Electrochem. Soc. 152, A2256–A2271 (2005).

    Article  Google Scholar 

  7. Yasumatsu, H., Hayakawa, T., Koizumi, S. & Kondow, T. Unisized two-dimensional platinum clusters on silicon(111)-7× surface observed with scanning tunneling microscope. J. Chem. Phys. 123, 124709 (2005).

    Article  Google Scholar 

  8. Alayan, R. et al. Morphology and growth of metal clusters in the gas phase: A transition from spherical to ramified structures. Phys. Rev. B 73, 125444 (2006).

    Article  Google Scholar 

  9. Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  10. Zhao, M., Sun, L. & Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877–4878 (1998).

    Article  CAS  Google Scholar 

  11. Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).

    Article  CAS  Google Scholar 

  12. Zheng, J., Petty, J. T. & Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 125, 7780–7781 (2003).

    Article  CAS  Google Scholar 

  13. Ye, H. & Crooks, R. M. Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J. Am. Chem. Soc. 127, 4930–4934 (2005).

    Article  CAS  Google Scholar 

  14. Ye, H. & Crooks, R. M. Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 129, 3627–3633 (2007).

    Article  CAS  Google Scholar 

  15. Lang, H., May, R. A., Iversen, B. L. & Chandler, B. D. Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J. Am. Chem. Soc. 125, 14832–14836 (2003).

    Article  CAS  Google Scholar 

  16. Esumi, K., Isono, R. & Yoshimura, T. Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20, 237–243 (2004).

    Article  CAS  Google Scholar 

  17. Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).

    Article  CAS  Google Scholar 

  18. Yamamoto, K. & Imaoka, T. Dendrimer complexes based on fine-controlled metal assembling. Bull. Chem. Soc. Jpn 79, 511–526 (2006).

    Article  CAS  Google Scholar 

  19. Hecht, S. & Fréchet, J. M. J. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Ed. 40, 74–91 (2001).

    Article  CAS  Google Scholar 

  20. Weyermann, P., Gisselbrecht, J., Boudon, C., Diederich, F. & Gross, M. Dendritic iron porphyrins with tethered axial ligands: new model compounds for cytochromes. Angew. Chem. Int. Ed. 38, 3215–3219 (1999).

    Article  CAS  Google Scholar 

  21. Enoki, O., Katoh, H. & Yamamoto, K. Synthesis and properties of a novel phenylazomethine dendrimer with a tetraphenylmethane core. Org. Lett. 8, 569–571 (2006).

    Article  CAS  Google Scholar 

  22. Imaoka, T., Tanaka, R. & Yamamoto, K. Investigation of a molecular morphology effect on polyphenylazomethine dendrimers; physical properties and metal-assembling processes. Chem. Eur. J. 12, 7328–7336 (2006).

    Article  CAS  Google Scholar 

  23. Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. First synthesis of phenylazomethine dendrimer ligands and structural studies. J. Am. Chem. Soc. 123, 4414–4420 (2001).

    Article  CAS  Google Scholar 

  24. Dükers, K., Prince, K. C., Bonzel, H. P., Chá, V. & Horn, K. Adsorption-induced surface core-level shifts of Pt(110). Phys. Rev. B 36, 6292–6301 (1987).

    Article  Google Scholar 

  25. Peuckert, M. & Bonzel, H. P. Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy. Surf. Sci. 145, 239–259 (1984).

    Article  CAS  Google Scholar 

  26. Eberhardt, W. et al. Photoemission from mass-selected monodispersed Pt clusters. Phys. Rev. Lett. 64, 780–783 (1990).

    Article  CAS  Google Scholar 

  27. You, T. et al. Co-sputtered thin film consisting of platinum nanoparticles embedded in graphite-like carbon and its high electrocatalytic properties for electroanalysis. Chem. Mater. 14, 4796 (2002).

    Article  CAS  Google Scholar 

  28. Yoshitake, H., Mochizuki, T., Yamazaki, O. & Ota, K. Study of the density of the d-state and structure transformation of Pt fine particles dispersed on carbon electrodes by in-situ X-ray-absorption spectroscopy. J. Electroanal. Chem. 361, 229–237 (1993).

    Article  CAS  Google Scholar 

  29. Yoshitake, H., Yamazaki, O. & Ota, K. In-situ X-ray-absorption fine-structure study on structure transformation and electronic-state of various Pt particles on carbon electrode. J. Electrochem. Soc. 141, 2516–2522 (1994).

    Article  CAS  Google Scholar 

  30. Enoki, O., Imaoka, T. & Yamamoto, K. One-step synthesis of a platinum nanoparticle with carbon materials using a phenylazomethine dendrimer as a template. Bull. Chem. Soc. Jpn 79, 621–626 (2006).

    Article  CAS  Google Scholar 

  31. Huang, M. et al. Alternate assemblies of platinum nanoparticles and metalloporphyrins as tunable electrocatalysts for dioxygen reduction. Langmuir 21, 323–329 (2005).

    Article  CAS  Google Scholar 

  32. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  CAS  Google Scholar 

  33. Huang, W. et al. Dendrimer templated synthesis of one nanometre Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. (2008).

  34. Jiang, R. & Dong, S. Rotating ring disk electrode (RRDE) theory dealing with nonstationary electrocatalysis: study of the electrocatalytic reduction of dioxygen at cobalt protoporphrin modified electrode. J. Phys. Chem. 94, 7471–7476 (1990).

    Article  CAS  Google Scholar 

  35. Shi, C. & Anson, F. C. (5, 10, 15, 20-Tetramethylporphyrinato)cobalt(II): A Remarkably Active Catalyst for the Electroreduction of O2 to H2O. Inorg. Chem. 37, 1037–1043 (1998).

    Article  CAS  Google Scholar 

  36. Toda, T., Igarashi, H., Uchida, H. & Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999).

    Article  CAS  Google Scholar 

  37. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  38. Ramallo-Lopez, J. M. et al. XPS and XAFS Pt L-2, L-3-edge studies of dispersed metallic Pt and PtSn clusters on SiO2 obtained by organometallic synthesis: Structural and electronic characteristics. J. Phys. Chem. B 107, 11441–11451 (2003).

    Article  CAS  Google Scholar 

  39. Rodriguez, J. A., Chaturvedi, S., Jirsak, T. & Hrbek, J. Reaction of S2 and H2S with Sn/Pt(111) surface alloys: Effects of metal-metal bonding on reactivity towards sulfur. J. Chem. Phys. 109, 4052–4062 (1998).

    Article  CAS  Google Scholar 

  40. Satoh, N., Nakashima, T., Kamikura, K. & Yamamoto, K. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nature Nanotech. 3, 106–111 (2008).

    Article  CAS  Google Scholar 

  41. Ye, H., Crooks, J. A. & Crooks, R. M. Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. Langmuir 23, 11901–11906 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CREST from the Japan Science and Technology Agency, and a Grants-in-Aid for Scientific Research (Nos. 19205020, 19022034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The XAFS measurements were performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2007G160).

Author information

Authors and Affiliations

Authors

Contributions

O.E., H.K. and M.T. prepared clusters and modified electrodes. M.T. and T.I. carried out electrochemical measurements. W.C., T.I. and A.S. carried out XAFS experiments. W.C. analysed the EXAFS spectra. T.I. H.K. and K.Y. conceived experiments, designed experimental procedures and co-wrote the manuscript. K.Y. directed the research.

Corresponding author

Correspondence to Kimihisa Yamamoto.

Supplementary information

Supplementary information

Supplementary information (PDF 3187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Imaoka, T., Chun, WJ. et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nature Chem 1, 397–402 (2009). https://doi.org/10.1038/nchem.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.288

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing