[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing

Abstract

The premature-ageing disease Hutchinson-Gilford Progeria Syndrome (HGPS) is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A1,2. Progerin is also expressed sporadically in wild-type cells and has been linked to physiological ageing3. Cells from HGPS patients exhibit extensive nuclear defects, including abnormal chromatin structure4,5 and increased DNA damage6. At the organismal level, HGPS affects several tissues, particularly those of mesenchymal origin7. How the cellular defects of HGPS cells lead to the organismal defects has been unclear. Here, we provide evidence that progerin interferes with the function of human mesenchymal stem cells (hMSCs). We find that expression of progerin activates major downstream effectors of the Notch signalling pathway. Induction of progerin in hMSCs changes their molecular identity and differentiation potential. Our results support a model in which accelerated ageing in HGPS patients, and possibly also physiological ageing, is the result of adult stem cell dysfunction and progressive deterioration of tissue functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of Notch signalling pathway effectors in response to progerin.
Figure 2: Activation of Notch signalling pathway effectors in cells from HGPS patients.
Figure 3: Progerin alters the molecular and cellular identity of hMSCs.
Figure 4: Altered differentiation potential of progerin-expressing hMSCs.
Figure 5: Altered differentiation potential of NICD-expressing hMSCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human ageing. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature ageing disease Hutchinson-Gilford progeria syndrome. Nature Med. 11, 440–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature ageing. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, B. et al. Genomic instability in laminopathy-based premature ageing. Nature Med. 11, 780–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hennekam, R. C. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. 140, 2603–2624 (2006).

    Article  PubMed  Google Scholar 

  8. Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B. & Hutchison, C. J. Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86, 967–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Glynn, M. W. & Glover, T. W. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Dahl, K. N. et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 10271–10276 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, S. H. et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc. Natl Acad. Sci. USA 102, 10291–10296 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell Physiol. 194, 237–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Hansson, E. M. et al. Recording Notch signaling in real time. Dev. Neurosci. 28, 118–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ohtsuka, T. et al. Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol. Cell Neurosci. 31, 109–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  17. Zhang, C. et al. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J. Biol. Chem. 278, 35325–35336 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto, T. et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 295, 354–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Draper, J. S., Pigott, C., Thomson, J. A. & Andrews, P. W. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249–258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vujovic, S., Henderson, S. R., Flanagan, A. M. & Clements, M. O. Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif. 40, 185–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Satija, N. K. et al. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 16, 7–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Gridley, T. Notch signaling in vascular development and physiology. Development 134, 2709–2718 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Heessen, S. & Fornerod, M. The inner nuclear envelope as a transcription factor resting place. EMBO Rep. 8, 914–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallis, C. V. et al. Fibroblast clones from patients with Hutchinson-Gilford progeria can senesce despite the presence of telomerase. Exp. Gerontol. 39, 461–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Takizawa, T., Ochiai, W., Nakashima, K. & Taga, T. Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 31, 5723–5731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams, M., Reginato, M. J., Shao, D., Lazar, M. A. & Chatterjee, V. K. Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol. Chem. 272, 5128–5132 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Gregory, C. A., Gunn, W. G., Peister, A. & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Salani, D. et al. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am. J. Pathol. 157, 1703–1711 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parada, L. A., Elbi, C., Dundr, M. & Misteli, T. in Essential Cell Biology (eds, Davey, J. &. Lord, M. J.) Ch. 2 (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank A. Magra for help with adipogenesis, J. Roix for help with microarray analysis, T. Voss for help with microscopy, M. Conboy for technical advice on Notch activation, T. Takizawa, R.G. Faragher, T. Glover, J. Toguchida, M. Olive, M. Lazar, T. Ohtsuka, U. Lendahl and A. Marcello for providing reagents. The MPIIIB10 monoclonal antibody developed by M. Solursh was obtained from the Developmental Studies Hybridoma Bank, NICHD, University of Iowa. Fluorescence imaging was performed at the NCI Fluorescence Imaging Facility. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and by the Progeria Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and T.M. designed the study and wrote the manuscript. P.S. performed the experiments.

Corresponding author

Correspondence to Paola Scaffidi.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and S7 (PDF 1206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaffidi, P., Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10, 452–459 (2008). https://doi.org/10.1038/ncb1708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1708

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing