[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Network neuroscience

Abstract

Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Networks on multiple spatial and temporal scales.
Figure 2: Network measurement, construction and analysis.
Figure 3: Algebraic topology and simplicial complexes.
Figure 4: Dynamic and multilayer networks.
Figure 5: Controlling brain networks.
Figure 6: Epilepsy as a multiscale network disorder amenable to control.
Figure 7: Relations among anatomical connectivity and gene co-expression networks.
Figure 8: Crossing scales from brain networks to social networks.

Similar content being viewed by others

References

  1. Sejnowski, T.J., Churchland, P.S. & Movshon, J.A. Putting big data to good use in neuroscience. Nat. Neurosci. 17, 1440–1441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jorgenson, L.A. et al. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Phil. Trans. R. Soc. B 370, 20140164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Medaglia, J.D., Lynall, M.E. & Bassett, D.S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sporns, O. Networks of the Brain (MIT Press, 2010).

  7. Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Poldrack, R.A. & Gorgolewski, K.J. Making big data open: data sharing in neuroimaging. Nat. Neurosci. 17, 1510–1517 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Bentley, B. et al. The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jarrell, T.A. et al. The connectome of a decision-making neural network. Science 337, 437–444 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Takemura, S.Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichtman, J.W. & Denk, W. The big and the small: challenges of imaging the brain's circuits. Science 334, 618–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Kebschull, J.M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shih, C.T. et al. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25, 1249–1258 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Oh, S.W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bota, M., Sporns, O. & Swanson, L.W. Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl. Acad. Sci. USA 112, E2093–E2101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephan, K.E. et al. Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil. Trans. R. Soc. B 356, 1159–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markov, N.T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C. & Behrens, T.E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. USA 111, 16574–16579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones, D.K., Knösche, T.R. & Turner, R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 73, 239–254 (2013).

    Article  PubMed  Google Scholar 

  25. Donahue, C.J. et al. Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J. Neurosci. 36, 6758–6770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamel, E.J., Grewe, B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86, 140–159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller, P.J. & Ahrens, M.B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S. & Petersen, S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosenthal, G., Sporns, O. & Avidan, G. Stimulus dependent dynamic reorganization of the human face processing network. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhw279 (2016).

  31. Mišic´, B. & Sporns, O. From regions to connections and networks: new bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vogelstein, J.T. et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344, 386–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Crossley, N.A. et al. Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. USA 110, 11583–11588 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Izquierdo, E.J. & Beer, R.D. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS Comput. Biol. 9, e1002890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fornito, A. & Bullmore, E.T. Connectomic intermediate phenotypes for psychiatric disorders. Front. Psychiatry 3, 32 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Vidal, M., Cusick, M.E. & Barabási, A.L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geschwind, D.H. & Flint, J. Genetics and genomics of psychiatric disease. Science 349, 1489–1494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barabási, A.L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E.T. Schizophrenia, neuroimaging and connectomics. Neuroimage 62, 2296–2314 (2012).

    Article  PubMed  Google Scholar 

  42. de la Torre-Ubieta, L., Won, H., Stein, J.L. & Geschwind, D.H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lazer, D. et al. Life in the network: the coming age of computational social science. Science 323, 721–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onnela, J.P. & Rauch, S.L. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 41, 1691–1696 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Newman, M. Networks: An Introduction (Oxford University Press, 2010).

  46. Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis (Academic Press, 2016).

  47. Bassett, D.S. & Bullmore, E.T. Small-world brain networks revisited. The Neuroscientist http://dx.doi.org/10.1177%2F1073858416667720 (2016).

  48. van den Heuvel, M.P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  49. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. van den Heuvel, M.P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Markov, N.T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H. & Wang, X.J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horvát, S. et al. Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol. 14, e1002512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Betzel, R.F. et al. The modular organization of human anatomical brain networks: accounting for the cost of wiring. Network Neurosci. http://doi.org/10.1162/NETN_a_00002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013).

    Article  PubMed  Google Scholar 

  56. Sporns, O. & Betzel, R.F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    Article  PubMed  Google Scholar 

  57. Hinne, M., Heskes, T., Beckmann, C.F. & van Gerven, M.A. Bayesian inference of structural brain networks. Neuroimage 66, 543–552 (2013).

    Article  PubMed  Google Scholar 

  58. Zalesky, A., Fornito, A. & Bullmore, E.T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).

    Article  PubMed  Google Scholar 

  59. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A. & Onnela, J.P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Rosvall, M. & Bergstrom, C.T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Betzel, R.F. et al. Generative models of the human connectome. Neuroimage 124 Pt A, 1054–1064 (2016).

    Article  PubMed  Google Scholar 

  62. Avena-Koenigsberger, A., Goñi, J., Solé, R. & Sporns, O. Network morphospace. J. R. Soc. Interface 12, 20140881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Giusti, C., Ghrist, R. & Bassett, D.S. Two's company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data. Preprint at https://arxiv.org/abs/1601.01704 (2016).

  64. Courtney, O.T. & Bianconi, G. Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. Preprint at https://arxiv.org/abs/1602.04110 (2016).

  65. Sizemore, A., Giusti, C. & Bassett, D. Classification of weighted networks through mesoscale homological features. J Complex Netw http://dx.doi.org/10.1093/comnet/cnw013 (2015).

  66. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J. & Grafton, S.T. Cross-linked structure of network evolution. Chaos 24, 013112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dotko, P. et al. Topological analysis of the connectome of digital reconstructions of neural microcircuits. Preprint at https://arxiv.org/abs/1601.01580 (2016).

  68. Sizemore, A., Giusti, C., Betzel, R.F. & Bassett, D.S. Closures and Cavities in the Human Connectome. Preprint at https://arxiv.org/abs/1608.03520 (2016).

  69. Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. Neuroimage 60, 2096–2106 (2012).

    Article  PubMed  Google Scholar 

  70. Nigam, S. et al. Rich-club organization in effective connectivity among cortical neurons. J. Neurosci. 36, 670–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Friston, K.J., Li, B., Daunizeau, J. & Stephan, K.E. Network discovery with DCM. Neuroimage 56, 1202–1221 (2011).

    Article  PubMed  Google Scholar 

  72. Jirsa, V.K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A.R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

    CAS  PubMed  Google Scholar 

  73. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Szigeti, B. et al. OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front. Comput. Neurosci. 8, 137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stephan, K.E., Iglesias, S., Heinzle, J. & Diaconescu, A.O. Translational perspectives for computational neuroimaging. Neuron 87, 716–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Karr, J.R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009).

    Article  Google Scholar 

  79. Holme, P. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    Article  Google Scholar 

  80. Honey, C.J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goñi, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. USA 111, 833–838 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mišic´, B., Sporns, O. & McIntosh, A.R. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput. Biol. 10, e1003427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hutchison, R.M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    Article  PubMed  Google Scholar 

  86. Conaco, C. et al. Functionalization of a protosynaptic gene expression network. Proc. Natl. Acad. Sci. USA 109 (Suppl. 1), 10612–10618 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Beagan, J.A. et al. Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kivelä, M. et al. Multilayer networks. J. Compl. Netw. 2, 203–271 (2014).

    Article  Google Scholar 

  89. Betzel, R.F. et al. Functional brain modules reconfigure at multiple scales across the human lifespan. Preprint at https://arxiv.org/abs/1510.08045 (2015).

  90. Bassett, D.S., Yang, M., Wymbs, N.F. & Grafton, S.T. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human functional brain networks. Front. Neurosci. 10, 326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Calhoun, V.D., Miller, R., Pearlson, G. & Adali, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chai, L. et al. Evolution of brain network dynamics in neurodevelopment. Netw. Neurosci. http://doi.org/10.1162/NETN_a_00001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kopell, N.J., Gritton, H.J., Whittington, M.A. & Kramer, M.A. Beyond the connectome: the dynome. Neuron 83, 1319–1328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. O'Donnell, M.B. & Falk, E.B. Big data under the microscope and brains in social context integrating methods from computational social science and neuroscience. Ann. Am. Acad. Pol. Soc. Sci. 659, 274–289 (2015).

    Article  Google Scholar 

  96. Hasson, U. & Frith, C.D. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Phil. Trans. R. Soc. B 371, 20150366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Proulx, S.R., Promislow, D.E. & Phillips, P.C. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353 (2005).

    Article  PubMed  Google Scholar 

  98. Sacchet, M.D., Prasad, G., Foland-Ross, L.C., Thompson, P.M. & Gotlib, I.H. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front. Psychiatry 6, 21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Albert, R. & Thakar, J. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 353–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Wendling, F., Benquet, P., Bartolomei, F. & Jirsa, V. Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251 (2016).

    Article  PubMed  Google Scholar 

  101. Watanabe, T., Masuda, N., Megumi, F., Kanai, R. & Rees, G. Energy landscape and dynamics of brain activity during human bistable perception. Nat. Commun. 5, 4765 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Hermundstad, A.M. et al. Structurally constrained relationships between cognitive states in the human brain. PLoS Comput. Biol. 10, e1003591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harrington, D.L. et al. Network topology and functional connectivity disturbances precede the onset of Huntington's disease. Brain 138, 2332–2346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Falk, E.B. et al. Self-affirmation alters the brain's response to health messages and subsequent behavior change. Proc. Natl. Acad. Sci. USA 112, 1977–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gratton, C., Lee, T.G., Nomura, E.M. & D'Esposito, M. The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Front. Syst. Neurosci. 7, 124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Crofts, J.J. et al. Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54, 161–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ramsey, L.E. et al. Normalization of network connectivity in hemispatial neglect recovery. Ann. Neurol. 80, 127–141 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lewis, P.M., Thomson, R.H., Rosenfeld, J.V. & Fitzgerald, P.B. Brain neuromodulation techniques: a review. Neuroscientist 22, 406–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Johnson, M.D. et al. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans. Biomed. Eng. 60, 610–624 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kailath, T. Linear Systems (Prentice Hall, 1979).

  111. Liu, Y.Y., Slotine, J.J. & Barabási, A.L. Controllability of complex networks. Nature 473, 167–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Contr. Netw. Syst. 1, 40–52 (2014).

    Article  Google Scholar 

  113. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Santaniello, S. et al. Therapeutic mechanisms of high-frequency stimulation in Parkinson's disease and neural restoration via loop-based reinforcement. Proc. Natl. Acad. Sci. USA 112, E586–E595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ching, S. et al. Real-time closed-loop control in a rodent model of medically induced coma using burst suppression. Anesthesiology 119, 848–860 (2013).

    Article  PubMed  Google Scholar 

  116. Khambhati, A.N., Davis, K.A., Lucas, T.H., Litt, B. & Bassett, D.S. Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91, 1170–1182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wheeler, D.W. et al. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. eLife 4, e09960 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Schneider, C.J., Bezaire, M. & Soltesz, I. Toward a full-scale computational model of the rat dentate gyrus. Front. Neural Circuits 6, 83 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. van den Heuvel, M.P., Bullmore, E.T. & Sporns, O. Comparative Connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    Article  PubMed  Google Scholar 

  121. Goulas, A. et al. Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput. Biol. 10, e1003529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, L. et al. Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 80, 462–474 (2013).

    Article  PubMed  Google Scholar 

  123. Battiston, F., Nicosia, V., Chavez, M. & Latora, V. Multilayer motif analysis of brain networks. Preprint at https://arxiv.org/abs/1606.09115 (2016).

  124. Wolf, L., Goldberg, C., Manor, N., Sharan, R. & Ruppin, E. Gene expression in the rodent brain is associated with its regional connectivity. PLoS Comput. Biol. 7, e1002040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. French, L. & Pavlidis, P. Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput. Biol. 7, e1001049 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Richiardi, J. et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, G.Z. et al. Correspondence between resting-state activity and brain gene expression. Neuron 88, 659–666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fulcher, B.D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl. Acad. Sci. USA 113, 1435–1440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rubinov, M., Ypma, R.J., Watson, C. & Bullmore, E.T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl. Acad. Sci. USA 112, 10032–10037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Uddin, L.Q. Idiosyncratic connectivity in autism: developmental and anatomical considerations. Trends Neurosci. 38, 261–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hernandez, L.M., Rudie, J.D., Green, S.A., Bookheimer, S. & Dapretto, M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology 40, 171–189 (2015).

    Article  PubMed  Google Scholar 

  132. Kuiper, J.S. et al. Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. Int. J. Epidemiol. 45, 1169–1206 (2016).

    PubMed  Google Scholar 

  133. Mier, D. & Kirsch, P. Social-cognitive deficits in schizophrenia. Curr. Top. Behav. Neurosci. https://dx.doi.org/10.1007/7854_2015_427 (2016).

  134. Tost, H., Champagne, F.A. & Meyer-Lindenberg, A. Environmental influence in the brain, human welfare and mental health. Nat. Neurosci. 18, 1421–1431 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Byrge, L., Sporns, O. & Smith, L.B. Developmental process emerges from extended brain-body-behavior networks. Trends Cogn. Sci. 18, 395–403 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gibson, G. The environmental contribution to gene expression profiles. Nat. Rev. Genet. 9, 575–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Pescosolido, B. et al. The social symbiome framework: linking genes-to-global cultures in public health using network science. in Handbook of Applied Systems Science (ed. Neal, Z.P.) 25–48 (Routledge, 2015).

  138. Murphy, A.C. et al. Explicitly linking regional activation and function connectivity: community structure of weighted networks with continuous annotation. Preprint at https://arxiv.org/abs/1611.07962 (2016).

  139. Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc. Natl. Acad. Sci. USA 108, 9679–9684 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Giusti, C., Pastalkova, E., Curto, C. & Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. USA 112, 13455–13460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bassett, D.S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 112, 11678–11683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Betzel, R.F., Gu, S., Medaglia, J.D., Pasqualetti, F. & Bassett, D.S. Optimally controlling the human connectome: the role of network topology. Sci. Rep. 6, 30770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Muldoon, S.F. et al. Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Muldoon, S.F. et al. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain 138, 2875–2890 (2015).

    Article  PubMed  Google Scholar 

  146. Feldt Muldoon, S., Soltesz, I. & Cossart, R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc. Natl. Acad. Sci. USA 110, 3567–3572 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Burns, S.P. et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. USA 111, E5321–E5330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ching, S., Brown, E.N. & Kramer, M.A. Distributed control in a mean-field cortical network model: implications for seizure suppression. Phys. Rev. E 86, 021920 (2012).

    Article  CAS  Google Scholar 

  149. Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schmaelzle, R. et al. Brain connectivity dynamics during social interaction reflect social network structure. Preprint at https://doi.org/10.1101/096420 (2017).

Download references

Acknowledgements

The authors gratefully acknowledge helpful comments by A. Avena-Koenigsberger, R. Betzel, L. Chai and G. Rosenthal. D.S.B. acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the National Science Foundation (BCS-1430087, NCS BCS-1631550, CAREER PHY-1554488) and the US National Institutes of Health (R01-HD086888, R21-M MH-106799, R01NS099348). O.S. acknowledges support from the Indiana Clinical Translational Sciences Institute (NIH UL1TR0011808), the J.S. McDonnell Foundation (220020387), the National Science Foundation (1636892) and the US National Institutes of Health (R01-AT009036, R01-B022574 and P30-AG010133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Sporns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassett, D., Sporns, O. Network neuroscience. Nat Neurosci 20, 353–364 (2017). https://doi.org/10.1038/nn.4502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing