[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bose–Einstein condensation of atomic gases

Abstract

The early experiments on Bose–Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers — devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose–Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atom chip.
Figure 2: Demonstration of Fermi pressure25.
Figure 3: Explosion of a condensate with attractive interactions55.
Figure 4: Signature of superfluidity in a Bose-condensed cloud63.
Figure 5: Vortex lattices in rotating BECs69.
Figure 6: Vortex generation.
Figure 7: Visualization of vortex lines in a trapped condensate.
Figure 8: Mott insulator and superfluid phases coexisting in a BEC in a magnetic trap with a superimposed optical lattice98.
Figure 9: Experimental observation of the quantum phase transition from a superfluid to a Mott insulator in a Rb BEC99.

Similar content being viewed by others

References

  1. Arimondo, E., Phillips, W. D. & Strumia, F. Laser Manipulation of Atoms and Ions (North-Holland, Amsterdam, 1992).

    Google Scholar 

  2. Masuhara, N. et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

    ADS  CAS  PubMed  Google Scholar 

  3. Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M. in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS Press, Amsterdam, 1999).

    Google Scholar 

  4. Guéry-Odelin, D., Söding, J., Desbiolles, P. & Dalibard, J. Is Bose-Einstein condensation of atomic cesium possible? Europhys. Lett. 44, 25–30 (1998).

    ADS  Google Scholar 

  5. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bradley, C. C., Sackett, C. A., Tollet, J. J. & Hulet, R. G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    ADS  CAS  PubMed  Google Scholar 

  8. Fried, D. G. et al. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).

    ADS  CAS  Google Scholar 

  9. Schreck, F. et al. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403-1–080403-4 (2001).

    ADS  Google Scholar 

  10. Robert, A. et al. A Bose-Einstein condensate of metastable atoms. Science 292, 461–464 (2001).

    ADS  CAS  PubMed  Google Scholar 

  11. Pereira Dos Santos, F. et al. Bose-Einstein condensation of metastable helium. Phys. Rev. Lett. 86, 3459–3462 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000).

    ADS  CAS  PubMed  Google Scholar 

  13. Modugno, G. et al. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 294, 1320–1322 (2001).

    ADS  CAS  PubMed  Google Scholar 

  14. Shlyapnikov, G. V., Walraven, J. T. M., Rahmanov, U. M. & Reynolds, M. W. Decay kinetics and Bose condensation in a gas of spin-polarized triplet helium. Phys. Rev. Lett. 73, 3247–3250 (1994).

    ADS  CAS  PubMed  Google Scholar 

  15. Barrett, M. D., Sauer, J. A. & Chapman, M. S. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett. 87, 010404-1–010404-4 (2001).

    ADS  Google Scholar 

  16. Ott, H., Fortagh, J., Schlotterbeck, G., Grossmann, A. & Zimmermann, C. Bose-Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87, 230401-1–230401-4 (2001).

    ADS  Google Scholar 

  17. Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    ADS  PubMed  Google Scholar 

  18. Gustavson, T. L. et al. Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401-1–020401-4 (2002).

    ADS  Google Scholar 

  19. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993).

    ADS  CAS  PubMed  Google Scholar 

  20. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    ADS  CAS  Google Scholar 

  21. Courteille, P., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A. & Verhaar, B. J. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).

    ADS  CAS  Google Scholar 

  22. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    ADS  CAS  Google Scholar 

  23. Bloch, I., Greiner, M., Hänsch, O. M. W. & Esslinger, T. Sympathetic cooling of 85Rb and 87Rb. Phys. Rev. A 64, 021402-1–021402-4 (2001).

    ADS  Google Scholar 

  24. DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    CAS  PubMed  Google Scholar 

  25. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    ADS  CAS  PubMed  Google Scholar 

  26. Hadzibabic, Z. et al. Two species mixture of quantum degenerate Bose and Fermi gases. Preprint cond-mat/0112425 at 〈http://xxx.lanl.gov〉 (2001).

  27. Granade, S. R., Gehm, M. E., O'Hara, K. M. & Thomas, J. E. Preparation of a degenerate, two-component Fermi gas by evaporation in a single beam optical trap. Preprint cond-mat/0111344 at 〈http://xxx.lanl.gov〉 (2001).

  28. Stoof, H. T. C. & Houbiers, M. in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 537–553 (IOS Press, Amsterdam, 1999).

    Google Scholar 

  29. Timmermans, E. & Côté, R. Superfluidity in sympathetic cooling with atomic Bose-Einstein condensates. Phys. Rev. Lett. 80, 3419–3423 (1998).

    ADS  CAS  Google Scholar 

  30. Timmermans, E. Degenerate Fermion gas heating by hole creation. Phys. Rev. Lett. 87, 240403-1–240403-4 (2001).

    ADS  Google Scholar 

  31. Kim, J. et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665–3668 (1997).

    ADS  CAS  Google Scholar 

  32. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).

    ADS  CAS  Google Scholar 

  33. Vuletic, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    ADS  CAS  PubMed  Google Scholar 

  34. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2000).

    ADS  CAS  PubMed  Google Scholar 

  35. Heinzen, D. J., Wynar, R., Drummond, P. D. & Kheruntsyan, K. V. Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 84, 5029–5033 (2000).

    ADS  CAS  PubMed  Google Scholar 

  36. Mewes, M. O. et al. Bose-Einstein condensation in a tightly confining DC magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

    ADS  CAS  PubMed  Google Scholar 

  37. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    ADS  CAS  Google Scholar 

  38. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    ADS  CAS  Google Scholar 

  39. Pitaevskii, L. P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961).

    MathSciNet  Google Scholar 

  40. Gross, E. P. Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961).

    MathSciNet  MATH  Google Scholar 

  41. Bogoliubov, N. N. On the theory of superfluidity. J. Phys. (Moscow) 11, 23 (1947).

    MathSciNet  Google Scholar 

  42. Gardiner, C. W. Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas. Phys. Rev. A 56, 1414–1423 (1997).

    ADS  CAS  Google Scholar 

  43. Castin, Y. & Dum, R. Low-temperature Bose-Einstein condensates in time-dependent traps: beyond the U(1) symmetry-breaking approach. Phys. Rev. A 57, 3008–3021 (1998).

    ADS  CAS  Google Scholar 

  44. Burnett, K. in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 265–285 (IOS Press, Amsterdam, 1999).

    Google Scholar 

  45. Zaremba, E., Nikuni, T. & Griffin, A. Dynamics of trapped Bose gases at finite temperature. J. Low Temp. Phys. 116, 277–345 (1999).

    ADS  CAS  Google Scholar 

  46. Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science 279, 1005–1007 (1998).

    ADS  CAS  PubMed  Google Scholar 

  47. Köhl, M., Hänsch, T. W. & Esslinger, T. Growth of Bose-Einstein condensates from thermal vapor. Preprint cond-mat/0106642 at 〈http://xxx.lanl.gov〉 (2001).

  48. Moss, S. Formation and Decay of a Bose-Einstein Condensate in Atomic Hydrogen. Thesis, MIT (2001).

    Google Scholar 

  49. Gardiner, C. W., Lee, M. D., Ballagh, R. J., Davis, M. J. & Zoller, P. Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett. 81, 5266–5269 (1998).

    ADS  CAS  Google Scholar 

  50. Kocharovsky, V. V., Scully, M. O., Zhu, S.-Y. & Zubairy, M. S. Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy. Phys. Rev. A 61, 023609-1–023609-20 (2000).

    ADS  Google Scholar 

  51. Walser, R., Williams, J., Cooper, J. & Holland, M. Quantum kinetic theory for a condensed bosonic gas. Phys. Rev. A 59, 3878–3889 (1999).

    ADS  CAS  Google Scholar 

  52. Kagan, Y. & Svistunov, B. V. Evolution of correlation properties and appearance of broken symmetry in the process of Bose-Einstein condensation. Phys. Rev. Lett. 79, 3331–3334 (1997).

    ADS  CAS  Google Scholar 

  53. Bijlsma, M. J., Zaremba, E. & Stoof, H. T. C. Condensate growth in trapped Bose gases. Phys. Rev. Lett. 62, 063609-1–063609-16 (2000).

    Google Scholar 

  54. Sackett, C. A., Gerton, J. M., Welling, M. & Hulet, R. G. Measurement of collective collapse in a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 82, 876–879 (1999).

    ADS  CAS  Google Scholar 

  55. Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001).

    ADS  CAS  PubMed  Google Scholar 

  56. Hodby, E., Maragò, O. M., Hechenblaikner, G. & Foot, C. J. Experimental observation of Beliaev coupling in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2196–2199 (2001).

    ADS  CAS  PubMed  Google Scholar 

  57. Burger, S., Bongs, K., Dettmer, S., Ertmer, W. & Sengstock, K. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    ADS  CAS  Google Scholar 

  58. Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000).

    ADS  CAS  PubMed  Google Scholar 

  59. Wyatt, A. F. G. Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation. Nature 391, 56–59 (1998).

    ADS  CAS  Google Scholar 

  60. Raman, C. et al. Evidence for a critical velocity in a Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).

    ADS  CAS  Google Scholar 

  61. Onofrio, R. et al. Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000).

    ADS  CAS  PubMed  Google Scholar 

  62. Burger, S., Cataliotti, F. S., Fort, C., Minardi, F. & Inguscio, M. Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. Phys. Rev. Lett. 86, 4447–4450 (2001).

    ADS  CAS  PubMed  Google Scholar 

  63. Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

    ADS  CAS  PubMed  Google Scholar 

  64. Guéry-Odelin, D. & Stringari, S. Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 4452–4455 (1999).

    ADS  Google Scholar 

  65. Maragò, O. M. et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84, 2056–2059 (2000).

    ADS  PubMed  Google Scholar 

  66. Williams, J. E. & Holland, M. J. Preparing topological states of a Bose–Einstein condensate. Nature 401, 568–572 (1999).

    ADS  CAS  Google Scholar 

  67. Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

    ADS  CAS  Google Scholar 

  68. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

    ADS  CAS  PubMed  Google Scholar 

  69. Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001).

    ADS  CAS  PubMed  Google Scholar 

  70. Haljan, P. C., Coddington, I., Engels, P. & Cornell, E. A. Driving Bose-Einstein-condensate vorticity with a rotating normal cloud. Phys. Rev. Lett. 87, 210403-1–210403-4 (2001).

    ADS  Google Scholar 

  71. Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

    ADS  CAS  PubMed  Google Scholar 

  72. Hodby, E., Hechenblaikner, G., Hopkins, S. A., Maragò, O. M. & Foot, C. J. Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett. 88, 010405-1–010405-4 (2002).

    ADS  Google Scholar 

  73. Fetter, A. L. & Svidzinsky, A. A. Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001).

    ADS  CAS  Google Scholar 

  74. Feder, D. L., Svidzinsky, A. A., Fetter, A. L. & Clark, C. W. Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates. Phys. Rev. Lett. 86, 564–567 (2001).

    ADS  CAS  PubMed  Google Scholar 

  75. Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).

    ADS  CAS  PubMed  Google Scholar 

  76. Sinha, S. & Castin, Y. Dynamic instability of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190402-1–190402-4 (2001).

    ADS  Google Scholar 

  77. Dalfovo, F. & Stringari, S. Shape deformations and angular-momentum transfer in trapped Bose-Einstein condensates. Phys. Rev. A 63, 011601-1–011601-4 (2001).

    ADS  Google Scholar 

  78. Anglin, J. R. Local vortex generation and the surface mode spectrum of large Bose-Einstein condensates. Phys. Rev. Lett. 87, 240401-1–240401-4 (2001).

    ADS  Google Scholar 

  79. Anglin, J. R. Vortices near surfaces of Bose-Einstein condensates. Preprint cond-mat/0110389 at 〈http://xxx.lanl.gov〉 (2001).

  80. Winiecki, T., Jackson, B., McCann, J. F. & Adams, C. S. Vortex shedding and drag in dilute Bose-Einstein condensates. J. Phys. B 33, 4069–4078 (2000).

    ADS  CAS  Google Scholar 

  81. Feder, D. L. & Clark, C. W. Superfluid-to-solid crossover in a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190401-1–190401-4 (2001).

    ADS  Google Scholar 

  82. Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998).

    ADS  CAS  Google Scholar 

  83. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

    ADS  CAS  Google Scholar 

  84. Busch, T. & Anglin, J. R. Wave-function monopoles in Bose-Einstein condensates. Phys. Rev. A 60, R2669–R2672 (1999).

    ADS  CAS  Google Scholar 

  85. Stoof, H. T. C., Vliegen, E. & Al Khawaja, U. Monopoles in an antiferromagnetic Bose-Einstein condensate. Phys. Rev. Lett. 87, 120407-1–120407-4 (2001).

    ADS  Google Scholar 

  86. Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

    ADS  CAS  Google Scholar 

  87. Al Khawaja, U. & Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

    ADS  CAS  PubMed  Google Scholar 

  88. Ruostekoski, J. & Anglin, J. R. Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates. Phys. Rev. Lett. 86, 3934–3937 (2001).

    ADS  CAS  PubMed  Google Scholar 

  89. Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).

    ADS  CAS  Google Scholar 

  90. Görlitz, A. et al. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402-4–130402-4 (2001).

    ADS  Google Scholar 

  91. Ketterle, W. & van Druten, N. J. Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656–660 (1996).

    ADS  CAS  PubMed  Google Scholar 

  92. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

    ADS  CAS  PubMed  Google Scholar 

  93. Dettmer, S. et al. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406-1–160406-4 (2001).

    ADS  Google Scholar 

  94. Monien, H., Linn, M. & Elstner, N. Trapped one-dimensional Bose gas as a Luttinger liquid. Phys. Rev. A 58, R3395–R3398 (1998).

    ADS  CAS  Google Scholar 

  95. Olshanii, M. Atomic scattering in presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

    ADS  CAS  Google Scholar 

  96. Bouyer, P. & Kasevich, M. A. Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases. Phys. Rev. A 56, R1083–R1086 (1997).

    ADS  CAS  Google Scholar 

  97. Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).

    ADS  CAS  PubMed  Google Scholar 

  98. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  CAS  Google Scholar 

  99. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  CAS  PubMed  Google Scholar 

  100. Heinzen, D. J. in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 351–390 (IOS Press, Amsterdam, 1999).

    Google Scholar 

Download references

Acknowledgements

We are indebted to the whole BEC group at MIT for discussions. Our work is supported by NSF, ONR, ARO, NASA, and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anglin, J., Ketterle, W. Bose–Einstein condensation of atomic gases. Nature 416, 211–218 (2002). https://doi.org/10.1038/416211a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/416211a

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing