[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Global agronomy, a new field of research. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The global impact of agriculture has recently become a major research topic, stressed by the rapid growth of the world population. Agriculture management is indeed influencing the quality of water, air, soil, and biodiversity at the global scale. The main agricultural challenges have already been reviewed, but these reviews did not discuss in detail the adaptations of agricultural techniques to global issues and the research challenges for agronomy. Here, we propose a research planning for global agronomy including the following advices. Agronomists should update their research objects, methods, and tools to address global issues. Yield trends and variations among various regions should be analyzed to understand the sources of these variations. Crop model simulations should be upscaled to estimate potential yields and to assess the effect of climate change and resource scarcity at the global scale. Advanced methods should analyze output uncertainty of complex models used at a global scale. Indeed various global models are actually used, but these models are too complex and the output uncertainty is difficult to analyze. The meta-analysis of published data is a promising approach for addressing global issues, though meta-analysis must be applied carefully with appropriate techniques. Finally, global datasets on the performance and environmental impact of cropping systems should be developed to allow agronomists to identify promising cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubry C, Papy F, Capillon A (1998) Modelling decision-making processes for annual crop management. Agr Syst 56:45–65. doi:10.1016/S0308-521X(97)00034-6

    Google Scholar 

  • Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Avilés-Vazquez K, Samulon A, Perfecto I (2007) Organic agriculture and the global food supply. Renew Agric Food Syst 22:86–108. doi:10.1017/S1742170507001640

    Google Scholar 

  • Bakker MM, Govers G, Ewert F, Rounsevell M, Jones R (2005) Variability in regional wheat yields as a function of climate, soil and economic variables: assessing the risk of confounding. Agr Ecosyst Environ 110:195–209. doi:10.1016/j.agee.2005.04.016

    Google Scholar 

  • Barbottin A, Makowski D, Le Bail M, Jeuffroy M-H, Bouchard C, Barrier C (2008) Comparison of models and indicators for categorizing soft wheat fields according to their grain protein contents. Eur J Agron 29:159–183. doi:10.1016/j.eja.2008.05.004

    Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. doi:10.1641/0006-3568(2001)051%5B0227:HIOEPA%5D2.0.CO;2

    Google Scholar 

  • Bergez J-E, Deumier J-M, Lacroix B, Leroy P, Wallach D (2002) Improving irrigation schedules by using a biophysical and a decisional model. Eur J Agron 16:123–135. doi:10.1016/S1161-0301(01)00124-1

    Google Scholar 

  • Bertomeu M (2012) Growth and yield of maize and timber trees in smallholder agroforestry systems in Claveria, northern Mindanao, Philippines. Agrofor Syst 84:73–87. doi:10.1007/s10457-011-9444-x

    Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-Analysis. Wiley, Hoboken NJ

    Google Scholar 

  • Brandt SA, Thomas AG, Olfert OO, Leeson JY, Ulrich D, Weiss R (2010) Design, rationale and methodological considerations for a long term alternative cropping experiment in the Canadian plain region. Eur J Agron 32:73–79. doi:10.1016/j.eja.2009.07.006

    Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche Y-M, Cellier P, Debaeke P, Gaudillère J-P, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model Stics. Eur J Agron 18:309–332. doi:10.1016/S1161-0301(02)00110-7

    Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212. doi:10.1016/j.fcr.2010.07.012

    Google Scholar 

  • Brisson N, Levrault F (2010) Livre vert du projet CLIMATOR 2007–2010. ADEME, Paris

    Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443. doi:10.1038/nature05202

  • Casanova D, Goudriaan J, Bouma J, Epema GF (1999) Yield gap analysis in relation to soil properties in direct-seeded flooded rice. Geoderma 91:191–216. doi:10.1016/S0016-7061(99)00005-1

    Google Scholar 

  • Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35:4165–4173. doi:10.1016/j.biombioe.2011.06.037

    CAS  Google Scholar 

  • Collinson MP (2000) A history of farming system research. FAO and CABI publishing, Wallingford

    Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Google Scholar 

  • Cros MJ, Duru M, Garcia F, Martin-Clouaire R (2004) Simulating management strategies: the rotational grazing example. Agr Syst 80:23–42. doi:10.1016/j.agsy.2003.06.001

    Google Scholar 

  • de Noblet-Ducoudré N, Gervois S, Ciais P, Viovy N, Brisson N, Seguin B, Perrier A (2004) Coupling the soil–vegetation–atmosphere–transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24:1–11. doi:10.1051/agro:2004038

    Google Scholar 

  • de Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agr Syst 108:1–9. doi:10.1016/j.agsy.2011.12.004

    Google Scholar 

  • de Wit CT, van Keulen H, Seligman NG, Spharim I (1988) Application of interactive multiple goal programming techniques for analysis and planning of regional agricultural development. Agr Syst 26:211–230. doi:10.1016/0308-521X(88)90012-1

    Google Scholar 

  • Delmotte S, Tittonel P, Mouret J-C, Hammond R, Lopez-Ridaura S (2011) On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. Eur J Agron 35:223–236. doi:10.1016/j.eja.2011.06.006

    Google Scholar 

  • Doberman A (2012) Getting back to the field. Nature 485:176–177. doi:10.1038/485176a

    Google Scholar 

  • Dogliotti S, van Ittersum MK, Rossing WAH (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay. Agr Syst 86:29–51. doi:10.1016/j.agsy.2004.08.002

    Google Scholar 

  • Doré T, Clermont-Dauphin C, Crozat Y, David C, Jeuffroy M-H, Loyce C, Makowski D, Malezieux E, Meynard J-M, Valantin-Morison M (2008) Methodological progress in on-farm regional diagnosis. A review. Agron Sustain Dev 28:151–161. doi:10.1051/agro:2007031

    Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonel P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisting methods, concepts and knowledge. Eur J Agron 34:197–210. doi:10.1016/j.eja.2011.02.006

    Google Scholar 

  • Doré T, Sebillotte M, Meynard J-M (1997) A diagnostic method for assessing regional variation in crop yield. Agr Syst 54:169–188. doi:10.1016/S0308-521X(96)00084-4

    Google Scholar 

  • Dupin M, Reynaud P, Jarošík V, Baker R, Brunel S, Eyre D, Pergl J, Makowski D (2011) Effects of training dataset characteristics on the performance of models for predicting the distribution of Diabrotica virgifera virgifera. PloS One 6:1–11. doi:10.1371/journal.pone.0020957

    Google Scholar 

  • Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (2006) 2006 IPCC Guidelines for National Greenhouse Gas inventories. Volume 4: Agriculture, Forestry and Other land Use. IPCC, Institute for Global Environmental Strategies, Hayama, Japan

  • Elser J, Bennett EM (2011) A broken biogeochemical cycle. Nature 478:29–31. doi:10.1038/478029a

    CAS  PubMed  Google Scholar 

  • Enfors E, Barron J, Makurira H, Rockstrom J, Tumbo S (2011) Yield and soil system changes from conservation tillage in dryland farming: a case study from North Eastern Tanzania. Agric Water Manag 98:1687–1695. doi:10.1016/j.agwat.2010.02.013

    Google Scholar 

  • Farooq M, Flower KC, Jabran K, Wahid A, Siddique KHM (2011) Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res 117:172–183. doi:10.1016/j.still.2011.10.001

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452

    CAS  PubMed  Google Scholar 

  • Fresco LO (1984) Issues in farming systems research. Neth J Agric Sci 32:253–261

    Google Scholar 

  • Galloway J, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformations of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    CAS  PubMed  Google Scholar 

  • Garside AL, Bell MJ (2011) Growth and yield responses to amendments to the sugarcane monoculture: towards identifying the reasons behind the response to breaks. Crop Pasture Sci 62:776–789. doi:10.1071/CP11055

    Google Scholar 

  • Grote U, Craswell E, Vlek P (2005) Nutrient flows in international trade: ecology and policy issues. Environ Sci Pol 8:439–451. doi:10.1016/j.envsci.2005.05.001

    Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi:10.1038/nature06592

    CAS  PubMed  Google Scholar 

  • Harunur Rashid M, Murshedul Alam M, Rao AN, Ladha JK (2012) Comparative efficacy of pretilachlor and hand weeding in managing weeds and improving the productivity and net income of wet-seeded rice in Bangladesh. Field Crop Res 128:17–26. doi:10.1016/j.fcr.2011.11.024

    Google Scholar 

  • Hou P, Gao Q, Xie R, Li S, Meng Q, Kirkby EA, Römheld V, Müller T, Zhang F, Cui Z, Chen X (2012) Grain yields in relation to N requirement: optimizing nitrogen management for spring maize grown in China. Field Crop Res 129:1–6. doi:10.1016/j.fcr.2012.01.006

    Google Scholar 

  • Joannon A, Souchère V, Martin P, Papy F (2006) Reducing runoff by managing crop localisation at the catchment level, considering agronomic constraints at farm level. Land Degrad Dev 17:467–478. doi:10.1002/ldr.714

    Google Scholar 

  • Jones AJ, Selley RA, Mielke LN (1990) Cropping and tillage options to achieve erosion control goals and maximum profit on irregular slopes. J Soil Water Conserv 45:648–653

    Google Scholar 

  • Kiba DI, Zongo NA, Lompo F, Jansa J, Compaore E, Sedogo PM, Frossard E (2012) The diversity of fertilization practices affects soil and crop quality in urban vegetable sites of Burkina Faso. Eur J Agron 38:12–21. doi:10.1016/j.eja.2011.11.012

    Google Scholar 

  • Knickel K (1990) Agricultural structural change impact on the rural environement. J Rural Stud 6:383–393. doi:10.1016/0743-0167(90)90051-9

    Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudrée N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch SP, C (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cy 19:GB1015. doi:10.1029/2003GB002199

  • Krueger K, Goggi AS, Mullen RE, Mallarino AP (2012) Phosphorus and potassium fertilization do not affect soybean storability. Agron J 104:405–414. doi:10.2134/agronj2011.0156

    CAS  Google Scholar 

  • Laborte A, de Bie K, Smaling EMA, Moya PF, Boling AA, van Ittersum MK (2012) Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur J Agron 36:9–20. doi:10.1016/j.eja.2011.08.005

    Google Scholar 

  • Le Bail M, Makowski D (2004) A model-based approach for optimizing segregation of soft wheat in country elevators. Eur J Agron 21:171–180. doi:10.1016/j.eja.2003.07.002

    Google Scholar 

  • Le Ber F, Benoît M, Schott C (2006) Studying crop sequencies with CarrotAge, a HMM-based data mining software. Ecol Model 191:170–185. doi:10.1016/j.ecolmodel.2005.08.031

    Google Scholar 

  • Le Gal PY, Lyne PWL, Meyer E, Soler LG (2008) Impact of sugarcane supply scheduling on mill sugar production: a South African case study. Agr Syst 96:64–74. doi:10.1016/j.agsy.2007.05.006

    Google Scholar 

  • Leenhardt D, Angevin F, Biarnès A, Colbach N, Mignolet C (2010) Describing and locating cropping systems on a regional scale. A review. Agron Sustain Dev 30:131–138. doi:10.1051/agro/2009002

    Google Scholar 

  • Leenhardt D, Wallach D, Le Moigne P, Guérif M, Bruand A, Casterad MA (2006) Using crop models for multiple fileds. In: Wallach D, Makowski D, Jones J (eds) Working with dynamic crop models. Elsevier, Amsterdam, pp 209–248

    Google Scholar 

  • Licker R, Johnson M, Barford C, Foley JA, Kucharik CJ, Monfreda C, Ramankutty N (2010) Mind the gap: how do agricultural management explain the ‘yield gap’ of cropland around the world? Glob Ecol Biogeogr 19:769–782. doi:10.1111/j.1466-8238.2010.00563.x

    Google Scholar 

  • Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder A, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci U S A 107:8035–8040. doi:10.1073/pnas.0913658107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12:229–247. doi:10.1111/j.1530-9290.2008.00025.x

    CAS  Google Scholar 

  • Lobell D, Burke M (2009) Climate change and food security: adapting agriculture to a warmer world. Springer, Dordrecht

    Google Scholar 

  • Lobell D, Burke M (2010) On the use of statistical models to predict crop yield responses to climate change. Agr Forest Meteorol 150:1443–1452. doi:10.1016/j.agrformet.2010.07.008

    Google Scholar 

  • Lobell D, Cassman K, Field C (2009) Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Env Resour 34:179–204. doi:10.1146/annurev.environ.041008.093740

    Google Scholar 

  • MacDonald G, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world's croplands. Proc Natl Acad Sci U S A 108:3086–3091. doi:10.1073/pnas.1010808108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makowski D, Doré T, Monod H (2007) A new approach to analyze relationships between yield components using boundary lines. Agron Sustain Dev 27:119–128. doi:10.1051/agro:2006029

    Google Scholar 

  • Makowski D, Hendrix EMT, van Ittersum MK, Rossing WAH (2000) A framework to study nearly optimal solutions of linear programming models developed for agricultural land use exploration. Ecol Model 131:65–77. doi:10.1016/S0304-3800(00)00249-0

    Google Scholar 

  • Makowski D, Hendrix EMT, van Ittersum MK, Rossing WAH (2001) Generation and presentation of nearly optimal solutions for mixed-integer linear programming, applied to a case in farming system design. Eur J Oper Res 132:425–438. doi:10.1016/S0377-2217(00)00134-X

    Google Scholar 

  • Makowski D, Tichit M, Guichard L, van Keulen H, Beaudoin N (2009) Measuring the accuracy of agro-environmental indicators. J Environ Manage 90:S139–S146. doi:10.1016/j.jenvman.2008.11.023

    PubMed  Google Scholar 

  • Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, De Tourdonnet S, Valantin-Morison M (2008) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi:10.1051/agro:2007057

    Google Scholar 

  • Messiga AJ, Ziadi N, Bélanger G, Morel C (2012) Process-based mass-balance modelling of soil phosphorus availability in a grassland fertilized with N and P. Nutr Cycl Agroecosyst 92:273–287. doi:10.1007/s10705-012-9489-x

    CAS  Google Scholar 

  • Meyer R, Yu J (2000) BUGS for a Bayesian analysis of stochastic volatility models. Econ J 3:198–215. doi:10.1111/1368-423X.00046

    Google Scholar 

  • Michos MC, Mamolos AP, Menexes GC, Tsatsarelis CA, Tsirakoglou VM, Kalburtji KL (2012) Energy inputs, outputs and greenhouse gas emissions in organic, integrated and conventional peach orchards. Ecol Indic 13:22–28. doi:10.1016/j.ecolind.2011.05.002

    CAS  Google Scholar 

  • Mignolet C, Schott C, Benoit M (2004) Spatial dynamics of agricultural practices on a basin territory: a retrospective study to implement models simulating nitrate flow. The case of the Seine basin. Agronomie 24:219–236. doi:10.1051/agro:2004015

    Google Scholar 

  • Mishima S, Endo A, Kohyama K (2010) Recent trends in phosphate balance nationally and by region in Japan. Nutr Cycl Agroecosyst 86:69–77. doi:10.1007/s10705-009-9274-7

    CAS  Google Scholar 

  • Mollier A, de Willigen P, Heinen M, Morel C, Schneider A, Pellerin S (2008) A two dimensional simulation model of phosphorus uptake including crop growth and P-response. Ecol Model 210:453–464. doi:10.1007/0-306-47624-X_293

    Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cy 22:GB1022. doi:10.1029/2007GB002947

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield-gaps through nutrient and water management. Nature 490:254–257. doi:10.1038/nature11420

    CAS  PubMed  Google Scholar 

  • Nakano H, Morita S, Kitagawa H, Wada H, Takahashi M (2012) Grain yield response to planting density in forage rice with a large number of spikelets. Crop Sci 52:345–350. doi:10.2135/cropsci2011.02.0071

    Google Scholar 

  • Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Adler J, Mooney H (2005) Losing the links between livestock and land. Science 310:1621–1622. doi:10.1126/science.1117856

    CAS  PubMed  Google Scholar 

  • Nesme T, Toublant M, Mollier A, Morel C, Pellerin S (2012) Assessing phosphorus management among organic farming systems: a farm input, output and budget analysis in Southwestern France. Nutr Cycl Agroecosyst 92:225–236. doi:10.1007/s10705-012-9486-0

    Google Scholar 

  • Neumann K, Verburg PH, Stehfest E, Müller C (2010) The yield gap of global grain production: a spatial analysis. Agr Syst 103:316–326. doi:10.1016/j.agsy.2010.02.004

    Google Scholar 

  • Norton L, Johnson P, Joys A, Stuart R, Chamberlain D, Feber R, Firbank L, Manley W, Wolfe M, Hart B, Mathews F, Macdonald D, Fuller RJ (2009) Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agr Ecosyst Environ 129:221–227. doi:10.1016/j.agee.2008.09.002

    Google Scholar 

  • Otieno M, Woodcock BA, Wilby A, Vogiatzakis IN, Mauchline AL, Gikungu MW, Potts SG (2011) Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biol Conserv 144:2424–2431. doi:10.1016/j.biocon.2011.06.013

    Google Scholar 

  • Paillard S, Treyer S, Dorin B (2010) Agrimonde : scénarios et défis pour nourrir le monde en 2050. Editions Quae, Paris

    Google Scholar 

  • Papy F (2001) Interdépendance des systèmes de culture dans l'exploitation agricole. In: Malézieux E, Trébuil G, Jaeger M (eds) Modélisation des agro-écosystèmes et aide à la décision. Cirad-Inra edn. INRA-CIRAD, Montpellier, pp 51–74

    Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Philibert A, Loyce C, Makowski D (2012) Assessment of the quality of the meta-analysis in agronomy. Agric, Ecosyst Environ 148:72–82. doi:10.1016/j.agee.2011.12.003

    Google Scholar 

  • Philibert A, Loyce C, Makowski D (2013) Quantifying uncertainties in N2O emission due to N fertilizer application in cultivated areas. PlosOne 7. doi:10.1371/journal.pone.0050950

  • Piepho HP, Richter C, Spilke J, Hartung K, Kunick A, Thöle H (2011) Statistical aspects of on-farm experimentation. Crop Pasture Sci 62:721–735. doi:10.1071/CP11175

    Google Scholar 

  • Prost L, Makowski D, Jeuffroy M-H (2008) Comparison of stepwise selection and Bayesian model averaging for yield gap analysis. Ecol Model 219:66–76. doi:10.1016/j.ecolmodel.2008.07.026

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cy 22:GB1003. doi:10.1029/2007GB002952

  • Reganold JP, Glover JD, Andrews PK, Hinman HR (2001) Sustainability of three apple production systems. Nature 410:926–929. doi:10.1038/35073574

    CAS  PubMed  Google Scholar 

  • Ricci B, Franck P, Toubon JF, Bouvier J-C, Sauphanor B, Lavigne C (2009) The influence of landscape on insect pest dynamics: a case study in southeastern France. Landscape Ecol 24:337–349. doi:10.1007/s10980-008-9308-6

    Google Scholar 

  • Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agr Ecosyst Environ 108:218–227. doi:10.1016/j.agee.2005.02.005

    Google Scholar 

  • Rosenberg MS, Garrett KA, Su Z, Bowden RL (2004) Meta-analysis in plant pathology: synthesizing research results. Phytopathology 94:1013–1017. doi:10.1094/PHYTO.2004.94.9.1013

    CAS  PubMed  Google Scholar 

  • Rossing WAH, Meynard J-M, van Ittersum MK (1997) Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands. Eur J Agron 7:271–283. doi:10.1016/S1161-0301(97)00042-7

    Google Scholar 

  • Sacks WJ, Deryng D, Foley JA, Ramankutty N (2010) Crop planting date: an analysis of global patterns. Glob Ecol Biogeogr 19:607–620. doi:10.1111/j.1466-8238.2010.00551.x

    Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, Van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci U S A 109:6348–6353. doi:10.1073/pnas.1113675109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauvant D, Schmidely P, Daudin JJ, St-Pierre NR (2008) Meta-analyses of experimental data in animal nutrition. Animal 2:1203–1214. doi:10.1017/S1751731108002280

    CAS  PubMed  Google Scholar 

  • Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012a) Conceptual design and quantification of phosphorus flows and balances at the country scale: the case of France. Glob Biogeochem Cycles 26, GB2008. doi:10.1029/2011GB004102

    Google Scholar 

  • Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012b) Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutr Cycl Agroecosyst 92:225–236. doi:10.1007/s10705-011-9478-5

    Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. doi:10.1038/nature11069

    CAS  PubMed  Google Scholar 

  • Souchère V, Millair L, Echeverria J, Bousquet F, Le Page C, Etienne M (2010) Co-constructing with stakeholders a role-playing game to initiate a collective management of erosive runoff risks at watershed scale. Environ Model Software 25:1359–1370. doi:10.1016/j.envsoft.2009.03.002

    Google Scholar 

  • Spiertz H (2012) Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use. Eur J Agron 43:1–8. doi:10.1016/j.eja.2012.04.004

    Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    CAS  Google Scholar 

  • Stockle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi:10.1016/S1161-0301(02)00109-0

    Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 161:159–161. doi:10.1038/472159a

    Google Scholar 

  • Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V, Liira J, Weisser WW, Winqvist C, Tscharntke T (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196. doi:10.1890/10-0929.1

    PubMed  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi:10.1126/science.285.5429.893

    CAS  PubMed  Google Scholar 

  • Tilman D, Gassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    CAS  PubMed  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. doi:10.1016/j.biocon.2012.01.068

    Google Scholar 

  • Tueche JR, Hauser S (2011) Maize (Zea mays L.) yield and soil physical properties as affected by the previous plantain cropping systems, tillage and nitrogen application. Soil Tillage Res 115:88–93. doi:10.1016/j.still.2011.07.004

    Google Scholar 

  • van Ittersum MK, Donatelli M (2003) Modeling cropping systems: highlights of the symposium and preface to the special issues. Eur J Agron 18:187–197. doi:10.1016%2fS1161-0301(02)00104-1

    Google Scholar 

  • van Ittersum MK, Rabbinge R, van Latesteijn HC (1998) Exploratory land use studies and their role in strategic policy making. Agr Syst 58:309–330. doi:10.1016/S0308-521X(98)00033-X

    Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Global Environ Chang 20:428–439. doi:10.1016/j.gloenvcha.2010.04.004

    Google Scholar 

  • Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7:235–250. doi:10.1016/S0378-519X(97)80029-3

    Google Scholar 

  • Yang YX, Li PR, Zhang SL, Sun BH, Chen XP (2011) Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J Plant Nutr Soil Sci 174:775–784. doi:10.1002/jpln.201000134

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nadine Brisson for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Makowski.

About this article

Cite this article

Makowski, D., Nesme, T., Papy, F. et al. Global agronomy, a new field of research. A review. Agron. Sustain. Dev. 34, 293–307 (2014). https://doi.org/10.1007/s13593-013-0179-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0179-0

Keywords

Navigation