[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Model-based control of the flying helicopter simulator: evaluating and optimizing the feedback controller

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The numerical evaluation and optimization of the feedback controller parameters of the model-based control implemented in the flying helicopter simulator is subject of this paper. The German Aerospace Center operates this helicopter as a flying testbed for numerous applications, e.g., pilot assistance and in-flight simulation. Initially, the elements of the model-based control are presented. A genetic algorithm and the Nelder–Mead simplex method used for optimization are described. Two simple objective functions to rate parameter sets in the time domain are presented, and a Simulink® model of the helicopter dynamics and the controller structure are used to find optimized sets. The first function, called “Delta Rating”, consists of a normalized integral of the absolute error between commanded and measured states. The second function incorporates the Delta Rating, but is enhanced by a penalty on overshoots. The controllers found are further evaluated using a frequency domain approach consisting of a weighted sum of the differences in amplitude and phase, also considering the coherence at the corresponding frequency. Apart from the Simulink® model, a ground-based simulator is used to evaluate the standard and the optimized controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AC, RC, TC:

Attitude, rate, translational rate command

DLR:

Deutsches Zentrum für Luft- und Raumfahrt/German Aerospace Center

DR:

Delta Rating

FB, FF:

Feedback, feedforward controller

FHS:

Flying helicopter simulator

IAE:

Integrated absolute error

MBCS:

Model-based control system

MIMO:

Multiple input multiple output

SISO:

Single input single output

A, B, C, D :

State-space representation matrices (standard form)

β :

Sideslip angle [°]

C(s):

Transfer function matrix of feedback controller

d :

Disturbance vector

δ p :

Pilot inputs (% deflection)

δ lon, δ lat :

Longitudinal, lateral cyclic pilot control (% deflection)

δ ped, δ col :

Pedal and collective pilot control (% deflection)

G(s):

Transfer function matrix

I :

Identity matrix

J :

Objective function

J ave :

Objective function in frequency domain, weighting amplitude and phase difference

J DR, J DROv :

Delta Rating objective function in time domain, without and with additional overshoot criterion

K :

Gain

k :

Vector of feedback parameters

L :

Derivatives of the identified model

M c(s):

Command model transfer function matrix

P :

Pole of a transfer function

P(s), P M(s):

Real, identified helicopter transfer function matrices

p, q, r :

Roll, pitch, and yaw rate (rad/s)

u, v, w :

Longitudinal, lateral, and vertical airspeed component, aircraft-fixed system (m/s)

u FF, u FB :

Vectors of actuator inputs to helicopter from feedforward and feedback controller (rad)

v d :

Vertical airspeed component, earth-fixed system (m/s)

V TAS :

True airspeed (m/s)

W :

Weighting factor

ΔX IAE :

Vector of absolute integrated errors

x c, x m :

Vectors of commanded, measured states

Δx :

Vector of differences between commanded and measured states

\( \gamma_{xy}^{2} \) :

Coherence

Φ, Θ, Ψ:

Euler roll, pitch, and yaw angles (rad)

φ :

Transfer function phase (°)

z :

Height, earth-fixed system (m)

ω n, ζ :

Natural frequency and damping

References

  1. Kaletka, J., Kurscheid, H., Butter, U.: FHS, the New Research Helicopter: Ready for Service. 29th European Rotorcraft Forum. Friedrichshafen (2003)

    Google Scholar 

  2. Hamers, M., Lantzsch, R., Wolfram, J.: First control system evaluation of the research helicopter FHS. 33rd European Rotorcraft Forum, Kazan, Russia (2007)

  3. Tischler, M.B.: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples, AIAA education series. American Institute of Aeronautics and Astronautics, Reston (2006)

    Google Scholar 

  4. Hamers, M., Grünhagen, W.: SIMH Helicopter Simulation User’s Guide. IB 111–1999/09 (restricted). DLR-Institut für Flugsystemtechnik, Braunschweig (1999)

    Google Scholar 

  5. Hamers, M., Grünhagen, W.V.: Dynamic engine model integrated in helicopter simulation. In: Grünhagen, W., Hamers, M. (eds.) Proceedings of the American Helicopter Society, 53th Annual Forum, Virginia Beach (1997)

  6. Mönnich, W.: Vorsteuerungsansätze für Modellfolgesysteme. IB 111-1999/20 (restricted). DLR-Institut für Flugsystemtechnik, Braunschweig (1999)

  7. Hamel, P.G., Kaletka, J.: Advances in rotorcraft system identification. Progress Aerospace Sci 33(3–4), 259–284 (1997)

    Article  Google Scholar 

  8. Brockhaus, R.: Flugregelung. Springer, Berlin (1994)

    Google Scholar 

  9. Thagizad, A., Bouwer, G.: Evaluation of Handling Qualities Improvements During A Steep Approach Using New Piloting Modes. American Helicopter Society 55th Annual Forum, Montreal, Canada (1999)

  10. Rynaski, E.G.: Adaptive multivariable model following. Proceedings of the Joint Automatic Control Conference, San Francisco (1980)

  11. Seher-Weiss, S., Grünhagen, W.: EC135 system identification for model following control and turbulence modeling. 1st CEAS European Air and Space Conference, Berlin (2007)

  12. Brisset, N., Mezan, N.: ADS 33 Handling Qualities Evaluations of Advanced Response Types Control Laws on the ACT/FHS Demonstrator. American Helicopter Society 61st Annual Forum, Grapevine (2005)

  13. Abildgaard, M.: Entwurf einer Regime Recognition im Projekt Allflight, IB 111–2009/13 (restricted). DLR-Institut für Flugsystemtechnik, Braunschweig (2009)

    Google Scholar 

  14. Chipperfield, A.J., Fleming, P.J., Pohlheim, H., Fonseca, C.M.: A genetic algorithm toolbox for MATLAB. Proceedings of the International Conference on Systems Engineering, Coventry (1994)

  15. Lewin, D.R., Parag, A.: A constrained genetic algorithm for decentralized control system structure selection and optimization. Automatica 39, 1801–1807 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fleming, P.J., Purshouse, R.C.: Evolutionary Algorithms in Control Systems Engineering: A Survey. Control Eng Pract 10(11), 1223–1241 (2002)

    Article  Google Scholar 

  17. Buchholz, J., Bauschat, M., Hahn, K.-U., Pausder, J.H.: ATTAS and ATTHeS in-flight simulators: recent applications, experiences and future programs. AGARD CP-577 of AGARD Symposium, Flight Simulation, Braunschweig, May 1995

  18. O’Mahony, T., Downing, C.J., Fatla, K.: Genetic Algorithms for PID Parameter Optimisation: Minimising Error Criteria. Process Control and Instrumentation 2000, pp. 148–153. University of Strathclyde, Scotland (2000)

  19. N.N.: Global Optimization Toolbox 3 User’s Guide. The MathWorks, Natick (2004)

  20. Bambha, N.K., Bhattacharyya, S.S., Teich, J., Zitzler, E.: Systematic integration of parameterized local search techniques in evolutionary algorithms. IEEE Trans. Evolut. Comput. 8(2), 137–155 (2004)

    Google Scholar 

  21. Storn, R.: Differential Evolution Research—Trends and Open Questions in Differential Evolution Research. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, chapter 1. Springer, Berlin Heidelberg (2008)

  22. Nelder, A.J., Mead, M.: A simplex method for function minimization. Comput J 7(4), 308–313 (1965)

    MATH  Google Scholar 

  23. Farag, A., Werner, H., Aten, M.: Decentralized control of a high voltage dc system using genetic algorithms. 5th IFAC World Congress, Prague, Czech Republic (2005)

  24. Tischler, M.B., Ivler, C.M., Mansur, M.H., Cheung, K.K., Berger, T., Berrios, M.: Handling-qualities optimization and trade-offs in rotorcraft flight control design. Rotorcraft Handling Qualities Conference, Liverpool, UK (2008)

  25. N.N.: ADS-33E-PRF: Aeronautical Design Standard, Handling Qualities Requirements for Military Rotorcraft. U.S. Army Aviation and Missile Command, Huntsville, Alabama (2000)

  26. N.N.: MIL-HDBK-1797: Flying Qualities of Piloted Aircraft. USAF MIL-HDBK 1997. Department of Defense Interface Standard, Washington, DC (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hofmann.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 27–29, 2011, Bremen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, J., Dittmer, A. Model-based control of the flying helicopter simulator: evaluating and optimizing the feedback controller. CEAS Aeronaut J 2, 43–56 (2011). https://doi.org/10.1007/s13272-011-0008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-011-0008-6

Keywords

Navigation