[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dispersion and rheology of carbon nanotubes in polymers

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

We review two generic mechanisms of dispersion of carbon nanotubes in a low-viscosity solvent or high-viscosity polymer, focusing on the neat nanotubes not surface-functionalized in any way. We give estimates of the van der Waals energies involved in nanotube aggregates and examine two main techniques: ultrasonication and shear mixing. For ultrasonic dispersion methods, the local mechanical energy applied to individual tubes is high and bundle separation is assured in the cavitation regime. We analyze and estimate the tube scission during ultrasonic cavitation and predict the characteristic nanotube length L lim below which scission does not occur. For shear-mixing, our analysis suggests that dispersion is possible in non-parallel bundled nanotube aggregates, in high-viscosity polymers, once a critical mixing time t* is reached. We then examine characteristic features of nanotube-polymer composite rheology and its aging/stability against re-aggregation. We show that at nanotube loading above overlap concentration the tubes form an elastic network in the matrix. Physical junctions of this network are strong and stable enough to provide a rubber-like elastic response with very slow relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahir SV, Terentjev EM, Lu SX, Panchapakesan B (2007) Thermal fluctuations, stress relaxation, and actuation in carbon nanotube networks. Phys Rev B 76:165437

    Article  Google Scholar 

  • Badaire S, Poulin P, Maugey M, Zakri C (2004) In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20:10367–10370

    Article  Google Scholar 

  • Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1343

    Article  Google Scholar 

  • Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman RH (2004) Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys 95:4335–4345

    Article  Google Scholar 

  • Birkin PR, Offin DG, Joseph PF, Leighton TG (2005) Cavitation, shock waves and the invasive nature of sonoelectrochemistry. J Phys Chem B 109:16997–17005

    Article  Google Scholar 

  • Chen GX, Li YJ, Shimizu H (2007) Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45:2334–2340

    Article  Google Scholar 

  • de Gennes P-G, Prost J (1994) Physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  • Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  Google Scholar 

  • Fry D, Sintes T, Chakrabarti A, Sorensen CM (2002) Enhanced kinetics and free-volume universality in dense aggregating systems. Phys Rev Lett 89:148301

    Article  Google Scholar 

  • Gedanken A (2003) Sonochemistry and its application to nanochemistry. Curr Sci 85:1720–1722

    Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104

    Article  Google Scholar 

  • Hennrich F, Krupke R, Arnold K, Stutz JAR, Lebedkin S, Koch T, Schimmel T, Kappes MM (2007) The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 111:1932–1937

    Article  Google Scholar 

  • Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Dispers Sci Technol 24:1–41

    Article  Google Scholar 

  • Hobbie EK (1998) Metastability and depletion-driven aggregation. Phys Rev Lett 81:3996–3999

    Article  Google Scholar 

  • Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  Google Scholar 

  • Islam MF, Alsayed AM, Dogic Z, Zhang J, Lubensky TC, Yodh AG (2004) Nematic nanotube gels. Phys Rev Lett 92:088303

    Article  Google Scholar 

  • Katoh R, Tasaka Y, Sekreta E, Yumura M, Ikazaki F, Kakudate Y, Fujiwara S (1999) Sonochemical production of a carbon nanotube. Ultrason Sonochem 6:185–187

    Article  Google Scholar 

  • Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3:564

    Article  Google Scholar 

  • Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491

    Article  Google Scholar 

  • Kuijpers MWA, Iedema PD, Kemmere MF, Keurentjes JTF (2004) The mechanism of cavitation-induced polymer scission; experimental and computational verification. Polymer 45:6461–6467

    Article  Google Scholar 

  • Lin-Gibson S, Schmidt G, Kim H, Han CC, Hobbie EK (2003) Shear-induced mesostructure in nanoplatelet-polymer networks. J Chem Phys 119:8080–8083

    Article  Google Scholar 

  • Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:048302

    Article  Google Scholar 

  • Lohse D (2005) Sonoluminescence—cavitation hots up. Nature 434:33–34

    Article  Google Scholar 

  • Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814-816

    Article  Google Scholar 

  • Martinez MT, Callejas MA, Benito AM, Cochet M, Seeger T, Anson A, Schreiber J, Gordon C, Marhic C, Chauvet O, Fierro JLG, Maser WK (2003) Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon 41:2247–2256

    Article  Google Scholar 

  • Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92:155503

    Article  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  • Nguyen TQ, Liang OZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793

    Article  Google Scholar 

  • Paulusse JMJ, Sijbesma RP (2006) Ultrasound in polymer chemistry: revival of an established technique. J Polym Sci A 44:5445–5453

    Article  Google Scholar 

  • Persello J, Magnin A, Chang J, Piau JM, Cabane B (1994) Flow of colloidal aqueous silica dispersions. J Rheol 38:1845–1870

    Article  Google Scholar 

  • Pestman JM, Engberts JBFN, DeJong F (1994) Sonochemistry—theory and applications. Recl Trav Chim Pays-Bas 113:533–542

    Google Scholar 

  • Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148

    Article  Google Scholar 

  • Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84:290–293

    Article  Google Scholar 

  • Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36:1603–1612

    Article  Google Scholar 

  • Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004a) Generic approach for disper sing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20:6085–6088

    Article  Google Scholar 

  • Shvartzman-Cohen R, Nativ-Roth E, Baskaran E, Levi-Kalisman Y, Szleifer I, Yerushalmi-Rozen R (2004b) Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc 126:14850–14857

    Article  Google Scholar 

  • Song WH, Windle AH (2005) Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38:6181–6188

    Article  Google Scholar 

  • Strano M, Moore VC, Miller MK, Allen M, Haroz E, Kittrell C, Hauge RH, Smalley RE (2003) The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J Nanosci Nanotechnol 3:81–86

    Article  Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  • Wang Y, Wu J, Wei F (2003) A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41:2939–2948

    Article  Google Scholar 

  • Xing YC, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21:4185–4190

    Article  Google Scholar 

Download references

Acknowledgements

Help and advise of O. Trushkevich, B. Panchapakesan, A. Ferrari and especially S.V. Ahir is gratefully appreciated. This work has been supported by EPSRC, ESA-ESTEC (18351/04) and The Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Terentjev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.Y., Terentjev, E.M. Dispersion and rheology of carbon nanotubes in polymers. Int J Mater Form 1, 63–74 (2008). https://doi.org/10.1007/s12289-008-0376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-008-0376-6

Keywords

Navigation