[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A method for sea surface wind field retrieval from SAR image mode data

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by combining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval results by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s−1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s−1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers, W., and Brummer, B., 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. Journal of Geophysical Research, 99(C6): 12613–12621.

    Article  Google Scholar 

  • Fetterer, F., Gimeris, D., and Wackerman, C. C., 1998. Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Transactions on Geoscience and Remote Sensing, 36: 479–492.

    Article  Google Scholar 

  • Gerling, T., 1986. Structure of the surface wind field from the Seasat SAR. Journal of Geophysical Research, 91(C2): 2308–2320.

    Article  Google Scholar 

  • Hersbach, H., 2003. CMOD5: An Improved Geophysical Model Function for ERS C-band Scatterometry. ECMWF Technical Memorandum No. 395, European Centre for Medium-Range Weather forecasts, 50pp.

    Google Scholar 

  • Hersbach, H., Stoffelen, A., and de Haan, S., 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research, 112: 3006–3024.

    Article  Google Scholar 

  • Horstmann, J., Koch, W., and Lehner, S., 2004. Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean Dynamics, 54: 570–576, DOI: 10.1007/s10236-004-0098-3.

    Article  Google Scholar 

  • Horstmann, J., Thompson, D. R., Monaldo, F., Iris, S., and Graber, H. C., 2005. Can synthetic aperture radars be used to estimate hurricane force winds? Geophysical Research Letters, 32, L22801, DOI: 10.1029/2005GL023992.

    Article  Google Scholar 

  • IFREMER, 1996. Off-line wind scatterometer ERS products: User Manual. Technical Report C2-MUT-W-01-IF, Version 2.0, IFREMER-CERSAT, Plouzane France, 75pp.

    Google Scholar 

  • Kerbaol, V., Chapron, B., and Vachon, P. W., 1998. Analysis of ERS-1/2 synthetic aperture radar wave Mode imagettes. Journal of Geophysical Research, 103(C4): 7833–7846.

    Article  Google Scholar 

  • Koch, W., 2004. Directional analysis of SAR images aiming at wind direction. IEEE Transaction on Geoscience and Remote Sensing, 42: 702–710.

    Article  Google Scholar 

  • Lehner, S., Horstmann, J., Koch, W., and Rosenthal, W., 1998. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of Geophysical Research, 103(C4): 7847–7856.

    Article  Google Scholar 

  • Monaldo, F., Thompson, D. R., Beal, R. C., Pichel, W. G., and Clemente-Colon, P., 2001. Comparison of SAR-derived wind speed with model predictions and buoy comparisons. IEEE Transaction on Geoscience and Remote Sensing, 39: 2587–2600.

    Article  Google Scholar 

  • Offiler, D., 1994. The calibration of ERS-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology, 11: 1002–1017.

    Article  Google Scholar 

  • Portablella, M., Stoffelen, A., and Johannessen, J. A., 2002. Toward an optimal inversion method for synthetic aperture radar wind retrieval. Journal of Geophysical Research, 107: 1029–2001.

    Article  Google Scholar 

  • Quilfen, Y., Chapron, B., and Elfouhaily, T., 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research-Oceans, 103(C4): 7767–7786.

    Article  Google Scholar 

  • Reppucci, A., Lehner, S., Schulz-Stellenfleth J., and Yang C.S., 2008, Extreme wind conditions by satellite synthetic aperture radar in the North West Pacific. International Journal of Remote Sensing, 29(21): 6129–6144.

    Article  Google Scholar 

  • Shen, H., Perrie, W., and He, Y.-J., 2006. A new hurricane wind retrieval algorithm for SAR images, Geophysical Research Letters, 33, L21812, DOI: 10.1029/2006GL027087.

    Article  Google Scholar 

  • Shimada, T., and Kawamura, H., 2004. Wind jets and wind waves off Pacific coast of northern Japan under winter monsoon captured by combined use of scatterometer, synthetic aperture, and altimeter. Journal of Geophysical Research-Oceans, 109(C12): 2004–2450.

    Article  Google Scholar 

  • Stoffelen, A., and Anderson, D., 1992. ERS-1 scatterometer data and characteristics and wind retrieval skill. European Space Agency Special Publication, 359(1): 41–47.

    Google Scholar 

  • Stoffelen, A., and Anderson, D., 1997a. Scatterometer data interpretation: Estimation and validation of the transfer function-CMOD4. Journal of Geophysical Research, 102: 5767–5780.

    Article  Google Scholar 

  • Stoffelen, A., and Anderson, D., 1997b. Scatterometer data interpretation: Measurement space and inversion. Journal of Atmospheric and Oceanic Technology, 14(6): 1298–1313.

    Article  Google Scholar 

  • Wacherman, C. C., Rufenach, C. L., Shuchman, R. A., Johannessen, J. A., and Davidson, K. L., 1996. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Transaction on Geoscience and Remote Sensing, 34: 1343–1352.

    Article  Google Scholar 

  • Zhang, B., Perrie, W., and He, Y.-J., 2011. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. Journal of Geophysical Research-Oceans, 116, C08008, DOI: 10.1029/2010JC006522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, W., Sun, J., Guan, C. et al. A method for sea surface wind field retrieval from SAR image mode data. J. Ocean Univ. China 13, 198–204 (2014). https://doi.org/10.1007/s11802-014-1999-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-1999-5

Key words

Navigation