[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Review of shadow detection and de-shadowing methods in remote sensing

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection. In these images, shadow is generally produced by different objects, namely, cloud, mountain and urban materials. The shadow correction process consists of two steps: detection and de-shadowing. This paper reviews a range of techniques for both steps, focusing on urban regions (urban shadows), mountainous areas (topographic shadow), cloud shadows and composite shadows. Several issues including the problems and the advantages of those algorithms are discussed. In recent years, thresholding and recovery techniques have become important for shadow detection and de-shadowing, respectively. Research on shadow correction is still an important topic, particularly for urban regions (in high spatial resolution data) and mountainous forest (in high and medium spatial resolution data). Moreover, new algorithms are needed for shadow correction, especially given the advent of new satellite images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addink E A, Stein A, 1999. A comparison of conventional and geostatistical methods to replace clouded pixels in NOAA-AVHRR images. International Journal of Remote Sensing, 20(5): 961–977. doi: 10.1080/014311699213028

    Article  Google Scholar 

  • Ahmad F, 2012. A review of remote sensing data change detection: Comparison of Faisalabad and Multan Districts, Punjab Province, Pakistan. Journal of Geography and Regional Planning, 5(9): 263–251. doi: 10.5897/JGRP11.121

    Google Scholar 

  • Al-Najdawi N, Bez H E, Singhai J et al., 2012. A survey of cast shadow detection algorithms. Pattern Recognition Letters, 33(6): 752–764. doi: 10.1016/j.patrec.2011.12.013

    Article  Google Scholar 

  • Apan A A, 1997. Land cover mapping for tropical forest rehabilitation planning using remotely-sensed data. International Journal of Remote Sensing, 18(5): 1029–1049. doi: 10.1080/014311697218557

    Article  Google Scholar 

  • Arellano P, 2003. Missing Information in Remote Sensing: Wavelet Approach to Detect and Remove Clouds and Their Shadows. Enshede, the Netherlands: International Institute Geo-Information Science and Earth Observation.

    Google Scholar 

  • Arevalo V, González J, Ambrosio G, 2005. Detecting Shadow QuickBird satellite images. ISPRS Commission VII Mid-term Symposium’ Remote Sensing: From Pixels to Processes’. Enschede, the Netherlands, 8–11 May.

    Google Scholar 

  • Arevalo V, González J, Ambrosio G, 2008. Shadow detection in colour high-resolution satellite images. International Journal of Remote Sensing, 29(7): 1945–1963. doi: 10.1080/01431160701395302

    Article  Google Scholar 

  • Arora M K, Mathur S, 2001. Multi-source classification using artificial neural network in a rugged terrain. Geocarto International, 16(3): 37–44. doi: 10.1080/10106040108542202

    Article  Google Scholar 

  • Asner G P, Warner A S, 2003. Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Remote Sensing of Environment, 87(4): 521–533. doi: 10.1016/j.rse.2003.08.006

    Article  Google Scholar 

  • ATCOR. Leica geosystems geospatial imaging, LLC. Available at: http://www.directionsmag.com.

  • Bishop M, Shroder J J, Colby D J, 2003. Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 55(1–4): 345–361. doi: 10.1016/S0169-555X(03)00149-1

    Article  Google Scholar 

  • Blesius L, Weirich F, 2005. The use of the Minnaert correction for land-cover classification in mountainous terrain. International Journal of Remote Sensing, 26(17): 3831–3851. doi: 10.1080/01431160500104194

    Article  Google Scholar 

  • Carvalho L M T, 2001. Mapping and Monitoring Forest Remnants: Amultiscale Analysis of Spatio-temporal Data. Netherlands: Wagenigen University.

    Google Scholar 

  • Chen Y, Wen D, Jing L et al., 2007. Shadow information recovery in urban areas from very high resolution satellite imagery. International Journal of Remote Sensing, 28(15): 3249–3254. doi: 10.1080/101431160600954621

    Article  Google Scholar 

  • Cheng F, Thiel K H, 1995. Delimiting the building heights in a city from the shadow in a panchromatic SPOT image. Part 1: Test of forty two buildings. International Journal of Remote Sensing, 16(3): 409–415. doi: 10.1080/01431169508954409

    Article  Google Scholar 

  • Choi K Y, Milton E J, 1999. A multispectral transform for the suppression of cloud shadows. In: Proceedings: Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing. Ottawa, Canada: ERIM International Inc.: 762–769.

    Google Scholar 

  • Colby D J, 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering & Remote Sensing, 57(5): 531–537.

    Google Scholar 

  • Conese C, Gilabert M A, Maselli F et al., 1993. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models. Photogrammetric Engineering & Remote Sensing, 59(12): 1745–1753.

    Google Scholar 

  • Dare P M, 2005. Shadow analysis in high-resolution satellite imagery of urban areas. Photogrammetric Engineering & Remote Sensing, 71(2): 169–177.

    Google Scholar 

  • Dorren L, Luuk K A, Maier B et al., 2003. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management, 183(1–3): 31–46. doi: 10.1016/S0378-1127(03)00113-0

    Article  Google Scholar 

  • Dozier J, 1989. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing Environment, 28: 9–22.

    Article  Google Scholar 

  • Eiumnoh A, Shrestha P, 2000. Application of DEM data to Land-sat image classification: Evaluation in a tropical wet-dry landscape of Thailand. Photogrammetric Engineering & Remote Sensing, 66(3): 297–304.

    Google Scholar 

  • Ekstrand S, 1996. Landsat TM based forest damage assessment correction for topographic effects. Photogrammetric Engineering & Remote Sensing, 62(2): 151–161.

    Google Scholar 

  • Fahsi A, Tsegaye T, Tadesse W et al., 2000. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification. Forest Ecology and Management, 128(1–2): 57–64. doi: 10.1016/S0378-1127(99)00272-8

    Article  Google Scholar 

  • Gao Y, Zhang W, 2009. LULC classification and Topographic Correction of Landsat-7 ETM + Imagery in the Yangjia River Watershed: The influence of DEM Resolution Sensors. Sensor, 9(3): 1980–1995. doi: 10.3390/s90301980

    Article  Google Scholar 

  • Gevers T, Smeulders A W M, 1999. Colour-based object recognition. Pattern Recognition, 32(3): 453–464. doi: 10.1016/S0031-3203(98)00036-3

    Article  Google Scholar 

  • Giles P T, Chapman M A, Franklin S E, 1994. Incorporation of a digital elevation model derived from stereoscopic satellite imagery in automated terrain analysis. Computers and Geosciences, 20(4): 441–460. doi: 10.1016/0098-3004(94)90078-7

    Article  Google Scholar 

  • Giles P, 2001. Remote sensing and cast shadows in mountainous terrain. Photogrammetric Engineering & Remote Sensing, 67(7): 833–839.

    Google Scholar 

  • Gitas I Z, Deverux B J, 2006. The role of topographic correction in mapping recently burned Mediterranean forest areas from LANDSAT TM images. International Journal of Remote Sensing, 27(1): 41–45. doi: 10.1080/01431160500182992

    Article  Google Scholar 

  • Goetz S J, Wright R K, Smith A J et al., 2003. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sensing of Environment, 88(1–2): 195–208. doi: 10.1016/j.rse.2003.07.010

    Article  Google Scholar 

  • Gu D, Gillespie A, 1998. Topographic normalization of Landsat TM images of forest based on Subpixel Sun-Canopy-Sensor Geometry. Remote Sensing of Environment, 64(2): 166–175. doi: 10.1016/S0034-4257(97)00177-6

    Article  Google Scholar 

  • Hansen M C, Loveland T R, 2012. A review of large area monitoring of land cover change using Landsat data. Remote sensing of Environment, 122(Landsat Legacy Special Issue): 66–74. doi: 10.1016/j.rse.2011.08.024

    Article  Google Scholar 

  • Hegarat-Mascle S L, Andre C, 2009. Use of Markov Random Fields for automatic clould/shadow detection on high resolution optical images. Journal of Photogrammetry and Remote Sensing, 64(4): 351–366. doi: 10.1016/j.isprsjprs.2008.12.007

    Article  Google Scholar 

  • Heiskanen J, Kajuutti K, Jackson M et al., 2002. Assessment of glaciological parameters using Landsat satellite data in Svartisen, Northern Norway. Proceedings of European Association of Remote sensing Laboratories (EARSel) Workshop on Observing Our Cryosphere from Space: Techniques and Methods for Monitoring Snow and Ice with Regard to Climate Change. Bern Switzerland, 11–13 March, 34–42.

    Google Scholar 

  • Hendriks J, Pellikka P, 2004. Estimation of reflectance from a glacier surface by comparing spectrometer measurements with satellite-derived reflectances. Journal of Glaciology, 38(2): 139–154.

    Google Scholar 

  • Holben B, Justice C, 1981. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 2(2): 115–133. doi: 10.1080/01431168108948349

    Article  Google Scholar 

  • Huang W, Xiao Y, Lu S, 2011. Shadow detection of the high-resolution remote sensing image based on pulse coupled neural network. 7th Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR)—Remote Sensing Image Processing, Geographic Information Systems, and Other Applications. Guilin, China.

    Google Scholar 

  • Jensen J, 2007. Introductory Digital Image Processing. Beijing: Science Press and Pearson Education Asia Limited, China, 127–173, 220–221.

    Google Scholar 

  • Jin S, Homer C, Yang L et al., 2013 Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA. International Journal of Remote Sensing, 34(5): 1540–1560. doi: 10.1080/01431161.2012.720045

    Article  Google Scholar 

  • Kouchi K, Yamazaki F, 2007. Characteristics of tsunami-affected areas in moderate-resolution satellite images. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1650–1657. doi: 10.1109/TGRS.2006.886968

    Article  Google Scholar 

  • Law K H, Nichol J, 2004. Topographic correction for differential illumination effects on IKONOS on satellite imagery. ISPRS Congress Istanbul. Turkey, 641-646.

  • Leblon B, Gallant L, Granberg H, 1996. Effects of shadowing types on ground-measured visible and near-infrared shadow reflectances. Remote Sensing of Environment, 58(3): 322–328. doi: 10.1016/S0034-4257(96)00079-X

    Article  Google Scholar 

  • LeciaGeosystems, 2008. ATCOR — Frequently Asked Questions: 6. what should be the resolution of my DEM be for ACTOR3? Available at: http://www.geosystems.de/atcor/faqs/faq-answers.html

    Google Scholar 

  • Liu J, Fang T, Li D, 2011. Shadow detection in remotely sensed images based on self-adaptive feature selection. IEEE Transactions on Geoscience and Remote Sensing, 49(12): 5092–5103. doi: 10.1109/TGRS.2011.2158221

    Article  Google Scholar 

  • Liu W, Yamazaki F, 2012. Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sesning, 5(4): 1296–1302. doi: 10.1109/JSTARS.2012.2189558

    Article  Google Scholar 

  • Lu D, 2006. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7): 1297–1328. doi: 10.1080/01431160500486732

    Article  Google Scholar 

  • Lu D, 2007. Detection and substitution of clouds/hazes and their cast shadows on IKONOS images. International Journal of Remote Sensing, 28(18): 4027–4035. doi: 10.1080/01431160701227703

    Article  Google Scholar 

  • Lu D, Weng Q, 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5): 823–870. doi: 10.1080/01431160600746456

    Article  Google Scholar 

  • Martinuzzi S, Gould W A, Ramos-González O M, 2007. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: Cloud and cloud-shadow removal, United States Department of Agriculture (USDA), General Technical Report IIFT-GTR-32. Available at: http://www.fs.fed.us/global/iitf/pubs/iitf-gtr32.pdf.

    Google Scholar 

  • Massalabi A, He D C, Beaudry G B, 2004. Restitution of information under shadow in remote sensing highs pace resolution images: Application to IKONOS data of Sherbrooke City. International Archives of Photogrammetry & Remote Sensing, 35(Part B7): 173–178.

    Google Scholar 

  • Mather P M, 2004. Computer Processing of Remotely-Sensed Images. London: John Wiley & Sons Ltd., 81 and 136.

    Google Scholar 

  • Matsushita B, Yang W, Onda Y et al., 2007. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effect: A case study in high-density cypress forest. Sensors, 7(11): 2636–265. doi: 10.3390/s7112636

    Article  Google Scholar 

  • Miura H, Midorikawa S, 2006. Slopr failures by the 2004 Niigata-Ken Chuetsu, Japan earthquake observed in high-resolution satellite images. 4th International Workshop on Remote Sensing for Post-Disaster Response. Cambridge, UK, 25–26 September.

    Google Scholar 

  • Nagao M, Matsutyama T, Ikeda Y, 1979. Region extraction and shape analysis in aerial photographs. Computer Vision Graphics and Image Processing, 10(3): 195–223.

    Article  Google Scholar 

  • Nakajima T, Tao G, Yasuoka Y, 2002. Simulated recovery of information in shadow areas on IKONOS image by combing ALS data. Proceeding of Asian Conference on Remote Sensing (ACRS). Available at: http://www.a-a-r-s.org/acrs/proceedings2002.php

    Google Scholar 

  • Nizalapur V, 2008. Land cover classification using multi-source data fusion of ENVISAT-ASAR and IRS p6 LISS-III Satellite data: A case study over tropical most deciduous forested regions of Karnataka, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Beijing, China.

    Google Scholar 

  • Nole G, Danese M, Mugante B et al., 2012. Satellite based observations of the time-variation of urban sprawl using autocorrelation techniques. Managing Complexity in Land Use and Environmental Impacts Modelling. 14–15 May, 512–527.

    Google Scholar 

  • Ortega-Huerta M, Komar O, Price K et al., 2012. Mapping coffee plantations with Landsat imagery: An example from El Salvador. International Journal of Remote Sensing, 33(1): 220–242. doi: 10.1080/01431161.2011.591442

    Article  Google Scholar 

  • Ozdemir I, 2008. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests. International Journal of Remote Sensing, 29(19): 5643–5655. doi: 10.1080/01431160802082155

    Article  Google Scholar 

  • Prati A, Mikic I, Trivedi M, Cucchiara R, 2003. Detecting Moving Shadows: Algorithms and Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7): 918–923. doi: 10.1109/TPAMI.2003.1206520

    Article  Google Scholar 

  • Pringle M J, Schmidt M, Muir J S, 2009. Geostatistical interpolation of SLC-off Landsat ETM+ images. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 654–664. doi: 10.1016/j.isprsjprs.2009.06.001

    Article  Google Scholar 

  • Rau J Y, Chen N Y, Chen L C, 2002. True orthophoto generation of built-up areas using multi-view images. Photogrammetric Engineering and Remote Sensing, 68(6): 581–588.

    Google Scholar 

  • Ren G, Zhu A X, Wang W et al., 2009. A hierarchical approach coupled with coarse DEM information for improving the efficiency and accuracy of forest mapping over very rugged terrains. Forest Ecology and Management, 258(1): 26–34. doi: 10.1016/j.foreco.2009.03.043

    Article  Google Scholar 

  • Riano D, Chuvieco E, Salas J et al., 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056–1061. doi: 10.1109/TGRS.2003.811693

    Article  Google Scholar 

  • Richter R, Kellenberger T, Kaufmann H, 2009. Comparison of topographic correction methods. Remote Sensing, 1(3): 184–196. doi: 10.3390/rs1030184

    Article  Google Scholar 

  • Richter R, Muller A, 2005. De-shadowing of satellite/airborne imagery. International Journal of Remote Sensing, 26(15): 3137–3148. doi: 10.1080/01431160500114664

    Article  Google Scholar 

  • Rosin P L, Ellis T, 1995. Image difference threshold strategies and shadow detection. In: Proceedings of the Sixth British Machine Vision Conference. Birmingham, UK, 347–356.

    Google Scholar 

  • Rossi R E, Dungan J L, Beck L R, 1994. Kriging in the shadows: Geostatistical interpolation for remote sensing. Remote Sensing of Environment, 49(1): 32–40. doi: 10.1016/0034-4257(94)90057-4

    Article  Google Scholar 

  • Roy D P, Ju J, Lewis P et al., 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6): 3112–3112. doi: 10.1016/j.rse.2008.03.009

    Article  Google Scholar 

  • Saha K A, Arora M K, Csaplovics E et al., 2005. Land covers classification using IRS LISS III image and DEM in a rugged terrain: A case study in Himalayas. Geocarto International, 20(2): 33–40. doi: 10.1080/10106040508542343

    Article  Google Scholar 

  • Salvador E, Cavallaro A, Ebrahimi T, 2001. Shadow identification and classification using invariant colour models. IEEE International Conference on Acoustic, Speech, and Signal Processing, Salt Lake City, Utah, 3, 1545–1548.

    Google Scholar 

  • Sarabandi P, Yamazaki F, Matsuoka M et al., 2004. Shadow detection and radiometric restoration in satellite high resolution images. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Ancorage Alaska, 20–24 Septmeber, 3744–3747. doi: 10.1109/IGARSS.2004.1369936

    Google Scholar 

  • Shahtahmassebi A R, Wang K, Zhangguan S et al., 2011. Evaluation on the two filling functions for the recovery of forest information in mountainous shadows on Landsat ETM+ Image. Journal of Mountain Science, 8(3): 414–426. doi: 10.1007/s11629-011-2051-5

    Article  Google Scholar 

  • Shettigara V K, Sumerling G M, 1998. Height determination of extended objects using shadows in SPOT images. Photogrammetric Engineering and Remote Sensing, 64(1): 35–44.

    Google Scholar 

  • Shu J S P, Freeman H, 1990. Cloud shadow removal from aerial photographs. Pattern Recognition, 23(6): 647–656. doi: 10.1016/0031-3203(90)90040-R

    Article  Google Scholar 

  • Simpson J J, Sitt J R, 1998. A procedure for the detection and removal of cloud shadow from AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 880–897. doi: 10.1109/36.673680

    Article  Google Scholar 

  • Soenen S A, Peddle D R, Coburn C A et al., 2007. Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode. International Journal of Remote Sensing, 29(4): 1007–1027. doi: 10.1080/01431160701311291

    Article  Google Scholar 

  • Song M, Civco D L, 2002. A knowledge-based approach for reducing cloud and shadow. Proceedings of the American Society of Photogrammetry and Remote Sensing—American Congress on Surveying and Mapping (ASPRS-ACSM) Annual Convention and International Federation of Surveyors (FIG) XXII Congress. Washington, DC, April, 22–26.

    Google Scholar 

  • Sotomayor A I T, 2002. A spatial analysis of different forest cover types using GIS and Remote sensing techniques. Forest Science Division International Institute for Geo information Science and Earth observation Enschede. the Netherlands, 20.

    Google Scholar 

  • Statella T, Da Silva E A, 2008. Shadows and clouds detection in high resolution images using mathematical morphology. Pecora 17-The Future of Land Imaging. Denver, Colorado, November 18–20.

    Google Scholar 

  • Susuki A, Shio A, Arai H et al., 2000. Dynamic shadow compensation of aerial images based on color and spatial analysis. In: Proceedings of the 15th International Conference on Patten Recognition. Barcelona, Catalonia, Spain, 317–320.

    Google Scholar 

  • Tobler W R, 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46: 234–240.

    Article  Google Scholar 

  • Tokola T, Sticklen J, Linden, M V D, 2001. Use of topographic correction in Landsat TM-based forest interpretation in Nepal. International Journal of Remote Sensing, 22(4): 551–563. doi: 10.1080/01431160050505856

    Article  Google Scholar 

  • Tsai V J D, 2006. A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1661–1667. doi: 10.1109/TGRS.2006.869980

    Article  Google Scholar 

  • Tseng D C, Tseng H T, Chien C L, 2008. Automatic cloud removal from multi-temporal SPOT images. Applied Mathematics and Computation, 205(2): 584–600. doi: 10.1016/j.amc.2008.05.050

    Article  Google Scholar 

  • Wan C Y, King B A, Li Z, 2012. An assessment of shadow enhanced urban remote sensing imagery of a complex city—Hong Kong. Proceedings of the XXII Congress of the International Society for Photogrammetry and Remote Sensing. Melbourne, Australia, 25 August–01 September, 177–182.

    Google Scholar 

  • Wang B, Ono A, Muramatsu K et al., 1999. Automated detection and removal of clouds and their shadows from Landsat TM images. IEICE Transactions on Information and Systems, E82D(2): 453–460.

    Google Scholar 

  • Wang Q J, Tian Q J, Lin Q Z et al., 2008. An improved algorithm for shadow restoration of high spatial resolution imagery. Proceedings of SPIE7123, Remote Sensing of the Environment: 16th National Symposium on Remote Sensing of China, 7123: 1–7. doi: 10.1117/12.816170

    Google Scholar 

  • Yang X, Skidmore, A K, Melick D et al., 2007. Towards an efficacious method of using Landsat TM imagery to map forest in complex mountain terrain in Northwest Yunnan, China. International Society for Tropical Ecology, 48(2): 227–239.

    Google Scholar 

  • Yesilnacar E, Suzen M L, 2006. A land-cover classification for landslide susceptibility mapping by using feature components. International Journal of Remote Sensing, 27(2): 253–275. doi: 10.1080/0143116050030042

    Article  Google Scholar 

  • Zhan Q M, Shi W Z, Xiao Y H, 2005. Quantitative analysis of shadow effects in high-resolution images of urban areas. 3rd International Symposium Remote Sensing and Data Fusion Over Urban Areas (URBAN) and 5th International Symposium Remote Sensing of Urban Areas (URS), 1682–1777. Available at: http://www.isprs.org/proceedings/XXXVI/8-W27/zhan.pdf

    Google Scholar 

  • Zhang C R, Li W D, Travis D J, 2009. Restoration of clouded pixels in multispectral remotely sensed imagery with cokriging. International Journal of Remote Sensing, 30(9): 2173–2195. doi: 10.1080/01431160802549294

    Article  Google Scholar 

  • Zhang C R, Li W D, Travis D J, 2007. Gap-fills of SLC-off Landsat ETM+ satellite image using a geostatistical approach. International Journal of Remote Sensing, 28(22): 5103–5122. doi: 10.1080/01431160701250416

    Article  Google Scholar 

  • Zhang X Y, Jiang H, Zhou G M et al., 2011. Geostatistical interpolation of missing data and downscaling of spatial resolution for remotely sensed atmospheric methane column concentrations. International Journal of Remote Sensing, 33(1): 1–15. doi: 10.1080/01431161.2011.584078

    Google Scholar 

  • Zhou W L, Huang G L, Troy A et al., 2009. Object-based land cover classification of shaded areas in high spatial resolution of imagery of urban areas: A comparison study. Remote Sensing of Environment, 113(8): 1769–1777. doi: 10.1016/j.rse.2009.04.007

    Article  Google Scholar 

  • Zhu X L, Liu D S, Chen J, 2012. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 124: 49–60. doi: 10.1016/j.rse.2012.04.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Additional information

Foundation item: Under the auspices of National Technology Research and Development Program of China (No. 2006BAJ05A02), National Natural Science Foundation of China (No. 31172023)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahtahmassebi, A., Yang, N., Wang, K. et al. Review of shadow detection and de-shadowing methods in remote sensing. Chin. Geogr. Sci. 23, 403–420 (2013). https://doi.org/10.1007/s11769-013-0613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0613-x

Keywords

Navigation