[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.B. Abshire , Geoscience Laser Altimeter System (GLAS) in the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 43, L21S02 (2005)

    Article  Google Scholar 

  • H. Araki , Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323, 897–900 (2009)

    Article  ADS  Google Scholar 

  • B.A. Archinal, et al., U.S. Geological Survey Open File Report 2006-1367, 21 pp., 2006. pubs.usgs.gov/of/2006/1367/

  • J.F. Cavanaugh , The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev. 131, 451–480 (2007)

    Article  ADS  Google Scholar 

  • G. Chin , Lunar Reconnaissance Orbiter overview: The instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007). doi:10.10007/s11214-007-9153-y

    Article  ADS  Google Scholar 

  • A.C. Cook , Lunar polar topography derived from Clementine stereoimages. J. Geophys. Res. 105, 12,023–12,033 (2000)

    ADS  Google Scholar 

  • J.O. Dickey , Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482–490 (1994)

    Article  ADS  Google Scholar 

  • W.M. Folkner, J.G. Williams, Planetary Ephemeris DE421 for Phoenix Navigation (Jet Propulsion Laboratory, Pasadena, 2008)

    Google Scholar 

  • H. Frey et al., Ancient lowlands on Mars. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013832

  • C.S. Gardner, Target signatures for laser altimeters: an analysis. Appl. Opt. 21, 448–453 (1982)

    Article  ADS  Google Scholar 

  • S. Goossens, K. Matsumoto, Lunar degree 2 potential Love number determination from satellite tracking data. Geophys. Res. Lett. 35 (2008). doi:10.1029/2007GL031960

  • W.M. Hartmann, Lunar cratering chronology. Icarus 13, 299–301 (1970)

    Article  ADS  Google Scholar 

  • W.M. Hartmann, Moon: Origin and evolution of multi-ring basins. Moon 3, 3–78 (1971)

    Article  ADS  Google Scholar 

  • J.A. Kamalakar , Lunar ranging instrument for Chandrayaan-1. J. Earth Syst. Sci. 114, 725–731 (2005)

    Article  ADS  Google Scholar 

  • A.S. Konopliv , Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)

    Article  ADS  Google Scholar 

  • H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, New York, 1989). 245 pp.

    Google Scholar 

  • G.A. Neumann , The crossover analysis of MOLA altimetric data. J. Geophys. Res. 106, 23,753–23,768 (2001)

    Article  ADS  Google Scholar 

  • S. Nozette , The Clementine mission to the Moon: Scientific overview. Science 266, 1835–1839 (1994)

    Article  ADS  Google Scholar 

  • D.E. Pavlis et al., GEODYN Operations Manuals. Raytheon ITTS Contractor Report, Lanham, MD, 2001

  • H. Qian, Topography of the Moon from the Chang’e Laser Altimetry Data, 2008

  • W. Quaide, Rilles, ridges and domes—Clues to maria history. Icarus 4, 374–389 (1965)

    Article  ADS  Google Scholar 

  • L. Ramos-Izquierdo et al., The Lunar Orbiter Laser Altimeter (LOLA) optical subsystem, 2009

  • H. Riris et al., LOLA Calibration Report. NASA/Goddard Space Flight Center, Greenbelt, MD, 2008

  • M.S. Robinson et al., The Lunar Reconnaissance Orbiter Camera (LROC). Space Sci. Rev. (2009, this issue)

  • D.D. Rowlands , The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys. Res. Lett. 26, 1191–1194 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  • R.A. Schultz , Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geol. Soc. Am. Bull. 32, 889–892 (2004)

    Google Scholar 

  • B.E. Schutz, Laser altimetry and LIDAR from ICESat/GLAS. IEEE Geosci. Remote Sens. 3, 1016–1019 (2001)

    Google Scholar 

  • D.E. Smith , Topography of the Moon from the Clementine LIDAR. J. Geophys. Res. 102, 1591–1611 (1997)

    Article  ADS  Google Scholar 

  • D.E. Smith , The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999)

    Article  ADS  Google Scholar 

  • D.E. Smith , Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001)

    ADS  Google Scholar 

  • L. Soderblom, A model for small-impact erosion applied to the lunar surface. J. Geophys. Res. 75, 2655–2661 (1970)

    Article  ADS  Google Scholar 

  • P.D. Spudis , Ancient multiring basins on the Moon revealed by Clementine laser altimetry. Science 266, 1848–1851 (1994)

    Article  ADS  Google Scholar 

  • X. Sun et al., Radiometry measurements of Mars at 1064 nm using the Mars Orbiter Laser Altimeter. EOS Trans. Am. Geophys. Un. 82, 2001

  • U.S. Geological Survey, Color-coded topography and shaded relief map of the lunar near side and far side hemispheres. Flagstaff, AZ, 2002, pp. I-2769

  • M.A. Wieczorek, Gravity and topography of the terrestrial planets. Treatise Geophys. 10, 165–206 (2007)

    Article  Google Scholar 

  • M.T. Zuber , The Mars Observer Laser Altimeter investigation. J. Geophys. Res. 97, 7781–7797 (1992)

    Article  ADS  Google Scholar 

  • M.T. Zuber , The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994)

    Article  ADS  Google Scholar 

  • M.T. Zuber , Outstanding questions on the internal structure and thermal evolution of the Moon and future prospects from the GRAIL mission. Lunar Planet. Sci. Conf. XXXIX, #1074 (2008a)

    ADS  Google Scholar 

  • M.T. Zuber , Laser altimeter observations from MESSENGER’s first Mercury flyby. Science 321, 77–79 (2008b)

    Article  ADS  Google Scholar 

  • M.T. Zuber et al., The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci. Rev. (2009, this issue)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Zuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.E., Zuber, M.T., Jackson, G.B. et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission. Space Sci Rev 150, 209–241 (2010). https://doi.org/10.1007/s11214-009-9512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9512-y

Keywords

Navigation