[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  2. Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  3. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 33, 253–265 (1971)

    Article  Google Scholar 

  4. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  5. Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthase et Applications. Editions Hermes, Paris (1995)

    Google Scholar 

  7. Podlubny, I.: Fractional-order systems and PIλDµ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Linares, H., Baillot, Ch., Oustaloup, A., Ceyral, Ch.: Generation of a fractal ground: Application in robotics. In: International Congress in IEEE-SMC CESA’96 IMACS Multiconf., Lille (1996)

    Google Scholar 

  9. Duarte, F.B.M., Macado, J.A.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29, 315–342 (2002)

    Article  MATH  Google Scholar 

  10. Zhu, H., Zhou, S., He, Z.: Chaos synchronization of the fractional-order Chen’s system. Chaos Solitons Fractals 41, 2733–2740 (2009)

    Article  MATH  Google Scholar 

  11. Li, C.P., Deng, W.H.: Chaos synchronization of fractional-order differential systems. Int. J. Mod. Phys. B 20, 791–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic system via a scaler transmitted signal. Physica A 359, 107–118 (2006)

    Article  Google Scholar 

  13. Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. 66, 831–837 (2011)

    Article  Google Scholar 

  14. Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems. Chin. Phys. B 19, 020510 (2010)

    Article  Google Scholar 

  15. Zhou, P., Ding, R.: Chaotic synchronization between different fractional-order chaotic systems. J. Franklin Inst. (2011). doi:10.1016/j.jfranklin.2011.09.004

    MathSciNet  Google Scholar 

  16. Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012)

    Article  Google Scholar 

  17. Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27, 519–525 (2006)

    Article  MATH  Google Scholar 

  18. Chang, C.-M., Cheng, H.-K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems. Nonlinear Dyn. 62, 851–858 (2010)

    Article  MATH  Google Scholar 

  19. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MathSciNet  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  22. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorenflo, R., Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus. Springer, New York (1997)

    Google Scholar 

  24. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237, 2628–2637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Popov, V.M.: Hyperstability of Control Systems. Springer, Berlin (1973)

    MATH  Google Scholar 

  26. Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, L., Yang, J.Y., Xu, S.Y.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal. 72, 2326–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Yang, S. Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations. Nonlinear Dyn 69, 983–992 (2012). https://doi.org/10.1007/s11071-011-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0320-z

Keywords

Navigation