Abstract
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.
Similar content being viewed by others
References
Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)
Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29, 441–444 (1984)
Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 33, 253–265 (1971)
Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)
Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)
Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthase et Applications. Editions Hermes, Paris (1995)
Podlubny, I.: Fractional-order systems and PIλDµ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)
Linares, H., Baillot, Ch., Oustaloup, A., Ceyral, Ch.: Generation of a fractal ground: Application in robotics. In: International Congress in IEEE-SMC CESA’96 IMACS Multiconf., Lille (1996)
Duarte, F.B.M., Macado, J.A.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29, 315–342 (2002)
Zhu, H., Zhou, S., He, Z.: Chaos synchronization of the fractional-order Chen’s system. Chaos Solitons Fractals 41, 2733–2740 (2009)
Li, C.P., Deng, W.H.: Chaos synchronization of fractional-order differential systems. Int. J. Mod. Phys. B 20, 791–803 (2006)
Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic system via a scaler transmitted signal. Physica A 359, 107–118 (2006)
Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. 66, 831–837 (2011)
Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems. Chin. Phys. B 19, 020510 (2010)
Zhou, P., Ding, R.: Chaotic synchronization between different fractional-order chaotic systems. J. Franklin Inst. (2011). doi:10.1016/j.jfranklin.2011.09.004
Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012)
Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27, 519–525 (2006)
Chang, C.-M., Cheng, H.-K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems. Nonlinear Dyn. 62, 851–858 (2010)
Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)
Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)
Gorenflo, R., Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus. Springer, New York (1997)
Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237, 2628–2637 (2008)
Popov, V.M.: Hyperstability of Control Systems. Springer, Berlin (1973)
Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)
Song, L., Yang, J.Y., Xu, S.Y.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal. 72, 2326–2336 (2010)
Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, R., Yang, S. Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations. Nonlinear Dyn 69, 983–992 (2012). https://doi.org/10.1007/s11071-011-0320-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-011-0320-z