[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

CD4+CD25+FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas

  • Lab Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Regulatory T-cells play an important role in the regulation of the immune response and the mediation of dominant immunologic tolerance. We have previously shown that these cells are elevated in tumors and blood of patients with glioblastoma multiforme. Heme oxygenase-1, a rate-limiting enzyme in heme catabolism, has also been shown to accumulate during glioma progression and to play a critical role in FoxP3 mediated immune suppression. In this study, we investigated the correlation between FoxP3 and HO-1 expression in patients with various grades of astrocytoma (WHO grade II–IV). Using qualitative and quantitative reverse transcriptase–polymerase chain reaction and quantitative flow cytometry analyses, we analyzed FoxP3 and HO-1 expression in 19 patients with different grades of astrocytoma. We observed the highest level of FoxP3 expression in patients with grade IV tumors (11.54 ± 1.95%) vs. grade III (6.74 ± 0.19%) or grade II (2.53 ± 0.11%) (P < 0.05). Moreover, in grade IV tumors, the frequency of HO-1 mRNA expression in CD4+CD25+ cells was 11.8 ± 2.45% vs. 7.42 ± 0.31% in grade III and 2.33 ± 0.12% in grade II. Tumor infiltrating Treg stained positively with anti-HO-1 antibody. The expression of HO-1 correlated with CD4+CD25+FoxP3+ infiltration (r = 0.966). Our results confirm that HO-1 expressing Treg accumulate during glioma progression. This study also suggests that HO-1 mRNA expression is linked to the induction of Foxp3 in CD4+CD25+ glioma infiltrating Treg. These findings support the suppressive role played by regulatory T-cells in the growth of malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54:369–377

    Article  PubMed  CAS  Google Scholar 

  2. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Google Scholar 

  3. Chattopadhyay S, Chakraborty NG, Mukherji B (2005) Regulatory T cells and tumor immunity. Cancer Immunol Immunother 54:1153–1161

    Article  PubMed  Google Scholar 

  4. Kohno T, Yamada Y, Akamatsu N, Kamihira S, Imaizumi Y, Tomonaga M, Matsuyama T (2005) Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci 96:527–533

    Article  PubMed  CAS  Google Scholar 

  5. Linehan DC, Goedegebuure PS (2005) CD25+CD4+ regulatory T-cells in cancer. Immunol Res 32:155–168

    Article  PubMed  CAS  Google Scholar 

  6. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL (2005) Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92:913–920

    Article  PubMed  CAS  Google Scholar 

  7. Wang RF (2006) Functional control of regulatory T cells and cancer immunotherapy. Semin Cancer Biol 16:106–114

    Article  PubMed  CAS  Google Scholar 

  8. Wang RF (2006) Immune suppression by tumor-specific CD4+ regulatory T-cells in cancer. Semin Cancer Biol 16:73–79

    Article  PubMed  CAS  Google Scholar 

  9. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  10. Wolf D, Rumpold H, Wolf AM (2006) Regulatory T cells in cancer biology: a possible new target for biochemical therapies. Mini Rev Med Chem 6:509–513

    Article  PubMed  CAS  Google Scholar 

  11. El Andaloussi A, Lesniak MS (2006) An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncol 8(3):234–243

    Article  PubMed  Google Scholar 

  12. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depeletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437

    PubMed  CAS  Google Scholar 

  13. Maines M (1998) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. Faseb J 2:2557–2568

    Google Scholar 

  14. Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA 84:5918–5922

    Article  PubMed  CAS  Google Scholar 

  15. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  PubMed  CAS  Google Scholar 

  16. Trakshel GM, Maines MD (1989) Multiplicity of heme oxygenase isozymes. HO-1 and HO-2 are different molecular species in rat and rabbit. J Biol Chem 264:1323–1328

    PubMed  CAS  Google Scholar 

  17. Willis D, Moore AR, Willoughby DA (2000) Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol 190:627–634

    Article  PubMed  CAS  Google Scholar 

  18. Ewing JF, Haber SN, Maines MD (1992) Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein. J Neurochem 58:1140–1149

    Article  PubMed  CAS  Google Scholar 

  19. Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72:1187–1203

    Article  PubMed  CAS  Google Scholar 

  20. Fukuda K, Panter SS, Sharp FR, Noble LJ (1995) Induction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci Lett 199:127–130

    Article  PubMed  CAS  Google Scholar 

  21. Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR (1996) Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res 37:201–208

    Article  PubMed  CAS  Google Scholar 

  22. Schipper HM, Cisse S, Stopa EG (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37:758–768

    Article  PubMed  CAS  Google Scholar 

  23. Hara E, Takahashi K, Tominaga T, Kumabe T, Kayama T, Suzuki H, Fujita H, Yoshimoto T, Shirato K, Shibahara S (1996) Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun 224:153–158

    Article  PubMed  CAS  Google Scholar 

  24. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    PubMed  CAS  Google Scholar 

  25. Deininger MH, Meyermann R, Trautmann K, Duffner F, Grote EH, Wickboldt J, Schluesener HJ (2000) Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 882:1–8

    Article  PubMed  CAS  Google Scholar 

  26. Pae HO, Oh GS, Choi BM, Chae SC, Chung HT (2003) Differential expressions of heme oxygenase-1 gene in CD25- and CD25+ subsets of human CD4+ T cells. Biochem Biophys Res Commun 306:701–705

    Article  PubMed  CAS  Google Scholar 

  27. Choi BM, Pae HO, Jeong YR, Oh GS, Jun CD, Kim BR, Kim YM, Chung HT (2004) Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radic Biol Med 36:858–871

    Article  PubMed  CAS  Google Scholar 

  28. Choi BM, Pae HO, Jeong YR, Kim YM, Chung HT (2005) Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem Biophys Res Commun 327:1066–1071

    Article  PubMed  CAS  Google Scholar 

  29. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, Shibahara S, Ogawa M, Maeda H (1999) Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80:1945–1954

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, Miyamoto Y, Maeda H (2003) Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer 88:902–909

    Article  PubMed  CAS  Google Scholar 

  31. Dwyer BE, Nishimura RN, Lu SY, Alcaraz A (1996) Transient induction of heme oxygenase after cortical stab wound injury. Brain Res Mol Brain Res 38:251–259

    Article  PubMed  CAS  Google Scholar 

  32. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272:5375–5381

    Article  PubMed  CAS  Google Scholar 

  33. Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis AP (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98:1667–1675

    Article  PubMed  CAS  Google Scholar 

  34. Pae HO, Oh GS, Choi BM, Chae SC, Kim YM, Chung KR, Chung HT (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 172:4744–4751

    PubMed  CAS  Google Scholar 

  35. Song R, Mahidhara RS, Zhou Z, Hoffman RA, Seol DW, Flavell RA, Billiar TR, Otterbein LE, Choi AM (2004) Carbon monoxide inhibits T lymphocyte proliferation via caspase-dependent pathway. J Immunol 172:1220–1226

    PubMed  CAS  Google Scholar 

  36. Woo J, Iyer S, Cornejo MC, Mori N, Gao L, Sipos I, Maines M, Buelow R (1998) Stress protein-induced immunosuppression: inhibition of cellular immune effector functions following overexpression of haem oxygenase (HSP 32). Transpl Immunol 6:84–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Chicago Cancer Research Center, The Brain Research Foundation, and The Ibrahim Bodur Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej S. Lesniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Andaloussi, A., Lesniak, M.S. CD4+CD25+FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83, 145–152 (2007). https://doi.org/10.1007/s11060-006-9314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9314-y

Keywords

Navigation