Abstract
Background and Objectives
Colorectal tumors are often observed with tumor infiltrating lymphocytes, presumably as a host-immune response, and patterns may segregate by types of genomic instability. Microsatellite unstable (MSI) colorectal cancers contain a pronounced lymphocyte reaction that can pathologically identify these tumors. Colorectal tumors with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) have not been examined for lymphocyte patterns.
Methods
We evaluated a 108-person cohort with 24 adenomas and 84 colorectal cancers for MSI and EMAST. Immunohistochemical detection of CD4+ and CD8+ T cell infiltration were performed. Prognostic relevance was assessed by survival analysis.
Results
CD8+ T cell infiltration in the tumor cell nest (p = 0.013) and tumor stroma (p = 0.004) were more prominent in moderately and poorly differentiated adenocarcinoma than in adenoma and well-differentiated adenocarcinoma. CD8+ T cells in the tumor cell nest (p = 0.002) and tumor stroma (p = 0.009) were at higher density in tumors with ulcerating features compared to tumors with a sessile or polypoid appearance. MSI-H tumors showed a higher density of CD8+ T cell infiltrations in tumor cell nests (p = 0.003) and tumor stroma (p = 0.001). EMAST-positive tumors showed a higher density of CD8+ T cell infiltrations than EMAST-negative tumors both in tumor cell nest (p = 0.027) and in tumor stroma (p = 0.003). These changes were not observed with CD4+ T lymphocytes. There was no difference in cancer patient survival based on density of CD8+ cells.
Conclusions
CD8+ T lymphocytes, but not CD4+ cells, were increased in tumor cell nests and the tumor stroma in both MSI and EMAST tumors, and showed higher infiltration in ulcerated tumors. CD8+ T lymphocyte infiltration is associated with both EMAST and MSI patterns, and increases with histological advancement.
Similar content being viewed by others
References
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964.
Speetjens FM, Kuppen PJ, Morreau H, van der Burg SH. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;135:711–712.
Linnebacher M, Gebert J, Rudy W, et al. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93:6–11.
Williams DS, Bird MJ, Jorissen RN, et al. Nonsense mediated decay resistant mutations are a source of expressed mutant proteins in colon cancer cell lines with microsatellite instability. PLoS One. 2010;5:e16012.
Waldner M, Schimanski CC, Neurath MF. Colon cancer and the immune system: the role of tumor invading T cells. World J Gastroentrol. 2006;12:7233–7238.
Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–2666.
Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–3494.
Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol. 1997;182:318–324.
Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–1099.
Reuschenbach M, Kloor M, Morak M, et al. Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer. 2010;9:173–179.
Haugen AC, Goel A, Yamada K, et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res. 2008;68:8465–8472.
Lee SY, Chung H, Deveraj B, et al. Microsatellite alterations at selected tetranucleotide repeats are associated with morphologies of colorectal neoplasias. Gastroenterology. 2010;139:1519–1525.
Devaraj B, Lee A, Cabrera BL, et al. Relationship of EMAST and microsatellite instability among patients with rectal cancer. J Gastrointest Surg. 2010;14:1521–1528.
Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–3061.
Snook AE, Li P, Stafford BJ, et al. Lineage-specific T-cell responses to cancer mucosa antigen oppose systemic metastases without mucosal inflammatory disease. Cancer Res. 2009;69:3537–3544.
Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63:1555–1559.
Potack J, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease. Gut Liver. 2008;2:61–73.
Deschoolmeester V, Baay M, Van Marck E, et al. Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010;11:19.
Acknowledgments
This study was supported by Konkuk University, the US Public Health Service (DK067287), the UCSD Digestive Diseases Research Development Center (DK080506), and the SDSU/UCSD Comprehensive Cancer Center Partnership (CA132379 and CA132384).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, SY., Miyai, K., Han, H.S. et al. Microsatellite Instability, EMAST, and Morphology Associations with T Cell Infiltration in Colorectal Neoplasia. Dig Dis Sci 57, 72–78 (2012). https://doi.org/10.1007/s10620-011-1825-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10620-011-1825-5