[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: a modeling analysis

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We analyzed interannual variability (IAV) of precipitation and air temperature over a 40-year period (1969–2008) for 11 sites along a precipitation gradient on the Tibetan Plateau. The observed IAV for both precipitation and air temperature decreases with increasing mean annual precipitation. Using Biome-BGC, a process-based ecosystem model, we simulated net primary production (NPP) along this gradient and find that the IAV of NPP is positively correlated to the IAV of precipitation and temperature. Following projected climate change scenarios for the Tibetan Plateau, our simulations suggest that with increasing IAV of precipitation and temperature, the IAV of NPP will also increase and that climate thresholds exist that, if surpassed, lead to ecosystem die-off. The impacts of these changes on ecosystem processes and climate-vegetation feedbacks on the rapidly warming Tibetan Plateau are potentially quite significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Biogeo 111(D5):D05109

    Article  Google Scholar 

  • Bai Y, Wu J, Xing Q et al (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89(8):2140–2153

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 847–940

    Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nature Clim Change 2(7):491–496

    Google Scholar 

  • Davidowitz G (2002) Does precipitation variability increase from mesic to xeric biomes? Global Ecol Biogeogr 11(2):143–154

    Article  Google Scholar 

  • Del Grosso S, Parton W, Stohlgren T et al (2008) Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89(8):2117–2126

    Article  Google Scholar 

  • Diffenbaugh N, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Chang 114(3):813–822

    Article  Google Scholar 

  • Ding M, Zhang Y, Liu L et al (2007) The relationship between NDVI and precipitation on the Tibetan Plateau. J Geogr Sci 17(3):259–268

    Article  Google Scholar 

  • Easterling D, Meehl G, Parmesan C et al (2000) Climate extremes: observations, modelling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Fang J, Piao S, Tang Z et al (2001) Interannual variability in net primary production and precipitation. Science 293(5536):1723

    Article  Google Scholar 

  • Glassy JM, Running SW (1994) Validating diurnal climatology logic of the MT-CLIM Model across a climatic gradient in Oregon. Ecol Appl 4(2):248–257

    Article  Google Scholar 

  • Hu ZM, Yu GR, Fu YL et al (2008) Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob Change Biol 14(7):1609–1619

    Article  Google Scholar 

  • Hui D, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169(1):85–93

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA et al (2004) Convergence across biomes to a common rain-use efficiency. Nature 429(6992):651–654

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21(3):289–302

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao X-Q (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  Google Scholar 

  • Le Houérou HN, Bingham RL, Skerbek W (1988) Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15(1):1–18

    Google Scholar 

  • Luo T, Li W, Zhu H (2002) Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecol Appl 12(4):980–997

    Article  Google Scholar 

  • Mohamed MAA, Babiker IS, Chen ZM et al (2004) The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Sci Total Environ 332(1–3):123–137

    Article  Google Scholar 

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162(2):281–293

    Article  Google Scholar 

  • Peng DL, Huang JF, Cai CX et al (2008) Assessing the response of seasonal variation of net primary productivity to climate using remote sensing data and geographic information system techniques in Xinjiang. J Integr Plant Biol 50(12):1580–1588

    Article  Google Scholar 

  • Qin J, Yang K, Liang S et al (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97(1):321–327

    Article  Google Scholar 

  • Reynolds JF, Fernández RJ, Kemp PR (2000) Drylands and global change: the effect of rainfall variability on sustainable rangeland production. In: Watanabe KN, Komanine A (eds) Proceedings of the 12th Toyota Conference: Challenge of Plant and Agricultural Sciences to the Crisis of Biosphere on the Earth in the 21th Century. R.G. Landes Company, Austin, Texas, pp 73–86

    Google Scholar 

  • Running SW, Hunt ERJ (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale-models. In: Ehleringer J, Field C (eds) Scaling processes between leaf and the globe. Academic, San Diego, CA, pp 141–157

    Chapter  Google Scholar 

  • Schlesinger WH, Belnap J, Marion G (2009) On carbon sequestration in desert ecosystems. Glob Change Biol 15(6):1488–1490

    Article  Google Scholar 

  • Shi XZ, Yu DS, Pan XZ et al. A framework for the 1:1000000 soil database of China. In: Proceedings of the 17th World Congress of Soil Science, Symposium No 62, Paper No 1757, 2002. pp 1751–1755

  • Thornton PE, Law BE, Gholz HL et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr Forest Meteorol 113(1–4):185–222

    Article  Google Scholar 

  • Trenberth K (2011) Changes in precipitation with climate change. Climate Res 47(1–2):123–138

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B et al (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14):L14702

    Article  Google Scholar 

  • Wang Y, Zhao P, Yu R et al (2010) Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall. Int J Climatol 30(6):856–865

    Google Scholar 

  • Ye J, Guo A, Sun G (2009) Statistical analysis of reference evapotranspiration on the Tibetan Plateau. J Irrig Drain E 135(2):134–140

    Article  Google Scholar 

  • Ye J, Li W, Li L et al (2013) "North drying and south wetting" summer precipitation trend over China and its potential linkage with aerosol loading. Atoms Res. doi:10.1016/j.atmosres.2013.01.007

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Zhao C, Chen Q, Qiao Y et al (2004) Structure and spatial pattern of a natural Abies faxoniana population on the eastern edge of Qinghai-Tibetan Plateau. Acta Phytoecologica Sinica 28(3):341–350

    Google Scholar 

  • Zhao Y, Yu Z, Chen F et al (2008) Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Global Planet Change 62(1/2):107–114

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China, Grant #31200373. The authors are grateful to Dr. Paul R. Kemp and three anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Min Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 128 kb)

ESM 2

(PDF 18.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, JS., Reynolds, J.F., Sun, GJ. et al. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: a modeling analysis. Climatic Change 119, 321–332 (2013). https://doi.org/10.1007/s10584-013-0719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0719-2

Keywords

Navigation