Abstract
In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming of most existing distributionally robust optimization models is that their ambiguity sets contain pathological discrete distributions that give nature too much freedom to inflict damage. We thus introduce a new class of ambiguity sets that contain only distributions with sum-of-squares (SOS) polynomial density functions of known degrees. We show that these ambiguity sets are highly expressive as they conveniently accommodate distributional information about higher-order moments, conditional probabilities, conditional moments or marginal distributions. Exploiting the theoretical properties of a measure-based hierarchy for polynomial optimization due to Lasserre (SIAM J Optim 21(3):864–885, 2011), we prove that certain worst-case expectation constraints are polynomial-time solvable under these new ambiguity sets. We also show how SOS densities can be used to approximately solve the general problem of moments. We showcase the applicability of the proposed approach in the context of a stylized portfolio optimization problem and a risk aggregation problem of an insurance company.
Similar content being viewed by others
References
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)
Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50(2), 358–374 (2002)
Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)
Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1, 223–236 (2001)
den Ben-Tal, A., den Hertog, D., de Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341–357 (2013)
De Klerk, E., Laurent, M.: Comparison of Lasserre’s measure-based bounds for polynomial optimization to bounds obtained by simulated annealing. Math. Oper. Res. 43(4), 1317–1325 (2018)
De Klerk, E., Laurent, M.: Worst-case examples for Lasserre’s measure–based hierarchy for polynomial optimization on the hypercube (2018). Preprint available at arXiv:1804.05524
De Klerk, E., Laurent, M., Sun, Z.: Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization. Math. Program. Ser. A 162(1), 363–392 (2017)
Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)
Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)
Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Oper. Res. 63(6), 1468–1488 (2015)
Doan, X.V., Natarajan, K.: On the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problems. Oper. Res. 60(1), 138–49 (2012)
Fiala, J., Kočvara, M., Michael Stingl, M.: PENLAB: a MATLAB solver for nonlinear semidefinite optimization. http://arxiv.org/pdf/1311.5240v1.pdf (2013)
Genz, A., Cools, R.: An adaptive numerical cubature algorithm for simplices. ACM Trans. Math. Softw. 29(3), 297–308 (2003)
Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4), 902–917 (2010)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)
Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx (2014)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1988)
Grundmann, A., Moeller, H.M.: Invariant integration formulas for the \(n\)-simplex by combinatorial methods. SIAM J. Numer. Anal. 15, 282–290 (1978)
Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. Ser. B 151(1), 35–62 (2015)
Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: Ambiguous joint chance constraints under mean and dispersion information. Oper. Res. 65(3), 751–767 (2017)
Hanasusanto, G.A., Kuhn, D., Wallace, S.W., Zymler, S.: Distributionally robust multi-item newsvendor problems with multimodal demand distributions. Math. Program. Ser. A 152(1), 1–32 (2015)
Kroo, A., Szilárd, R.: On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies. J. Approx. Theory 99(1), 134–152 (1999)
Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via Laplace techniques. Appl. Math. 28(4), 391–405 (2001)
Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. Ser. B 112, 65–92 (2008)
Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21(3), 864–885 (2011)
Lasserre, J.B.: The \({\mathbf{K}}\)-moment problem for continuous linear functionals. Trans. Am. Math. Soc. 365(5), 2489–2504 (2012)
Lasserre, J.B., Weisser, T.: Representation of distributionally robust chance-constraints (2018). Preprint available at arXiv:1803.11500
Li, B., Jiang, R., Mathieu, J.L.: Ambiguous risk constraints with moment and unimodality information. Mathematical Programming Series A (to appear) (2017). Preprint available at http://www.optimization-online.org/DB_FILE/2016/09/5635.pdf
Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)
McNeil, A., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2015)
Marichal, J.-L., Mossinghof, M.J.: Slices, slabs, and sections of the unit hypercube. Online J. Anal. Comb. 3, 1–11 (2008)
Mevissen, M., Ragnoli, E., Yu, J.Y.: Data-driven distributionally robust polynomial optimization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 37–45. Curran Associates, Inc. (2013)
Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. Ser. A 171(1–2), 115–166 (2018)
Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)
Pflug, G.C., Pichler, A., Wozabal, D.: The \(1/N\) investment strategy is optimal under high model ambiguity. J. Bank. Finance 36(2), 410–417 (2012)
Pflug, G.C., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7, 435–442 (2007)
Popescu, I.: A semidefinite programming approach to optimal-moment bounds for convex classes of distributions. Math. Oper. Res. 30(3), 632–657 (2005)
Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Berlin (1995)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rogosinski, W.W.: Moments of non-negative mass. Proc. R. Soc. A 245, 1–27 (1958)
Scarf, H.: A min–max solution of an inventory problem. In: Scarf, H., Arrow, K., Karlin, S. (eds.) Studies in the Mathematical Theory of Inventory and Production, vol. 10, pp. 201–209. Stanford University Press, Redwood City (1958)
Sklar, A.: Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229–231 (1959)
Shapiro, A.: On duality theory of conic linear problems. In: Goberna, M.Á., López, M.A. (eds.) Semi-Infinite Programming: Recent Advances, pp. 135–165. Springer, New York (2001)
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)
Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. In: Optimization Methods and Software, pp. 11–12, 625–653 (1999)
Van Parys, B.P.G., Goulart, P.J., Embrechts, P.: Fréchet inequalities via convex optimization (2016). Preprint available at http://www.optimization-online.org/DB_FILE/2016/07/5536.pdf
Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. Ser. A 156(1–2), 271–302 (2016)
Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)
Žáčková, J.: On minimax solutions of stochastic linear programming problems. Časopis pro pěstování matematiky 91, 423–430 (1966)
Zuluaga, L., Peña, J.F.: A conic programming approach to generalized Tchebycheff inequalities. Math. Oper. Res. 30(2), 369–388 (2005)
Acknowledgements
Etienne de Klerk would like to thank Dorota Kurowicka and Jean Bernard Lasserre for valuable discussions and references. Daniel Kuhn gratefully acknowledges financial support from the Swiss National Science Foundation under grant BSCGI0_157733.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Klerk, E., Kuhn, D. & Postek, K. Distributionally robust optimization with polynomial densities: theory, models and algorithms. Math. Program. 181, 265–296 (2020). https://doi.org/10.1007/s10107-019-01429-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-019-01429-5
Keywords
- Distributionally robust optimization
- Semidefinite programming
- Sum-of-squares polynomials
- Generalized eigenvalue problem