[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, 77 and 155 MHz Love wave surface acoustic wave (SAW) biosensors were fabricated to detect antigen-antibody reactions in liquid environments. The single-interdigital transducer (IDT) on the quartz crystal substrate was found to be not suitable for Love wave SAW biosensor because of its signal distortion due to triple transit echo (TTE) between the IDT fingers. As a waveguide layer for the Love wave SAW biosensor, SU-8 photoresist was coated on a quartz crystal substrate with double-IDT patterns. Anti-mouse IgG was immobilized on the sensing area with a protein G layer bound to a gold surface. The minimum detectable concentrations of mouse IgG for 77 and 155 MHz Love wave SAW biosensors and a surface plasmon resonance (SPR) biosensor were found to be 2.5, 1, and 1 μg/mL, respectively. The fabricated Love wave SAW and SPR biosensors showed similar performances in detectable concentrations of mouse IgG and in coefficient of determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Yu X, Zhao R, Shangguan DH, Bo Z, Liu G. Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution. Biosens. Bioelectron. 18: 1419–1427 (2003)

    Article  CAS  Google Scholar 

  2. Lin TY, Hu CH, Chou TC. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron. 20: 75–81 (2004)

    Article  CAS  Google Scholar 

  3. Michalzik M, Wendler J, Rabe J, Buttgenbach S, Bilitewski U. Development and application of miniaturized quartz crystal microbalance (QCM) as immunosensor for bone morphogenetic protein-2. Sensor. Actuat. B-Chem. 105: 508–515 (2005)

    Article  Google Scholar 

  4. Su XL, Li Y. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens. Bioelectron. 21: 840–848 (2005)

    Article  CAS  Google Scholar 

  5. Pei Z, Anderson H, Aastrup T, Ramstrom O. Study of real-time lectin-carbohydrate interactions of the surface of a quartz crystal microbalance. Biosens. Bioelectron. 21: 60–66 (2005)

    Article  CAS  Google Scholar 

  6. Pastorino L, Caneva Soumetz F, Giacomini M, Ruggiero C. Development of a piezoelectric immunosensor for the measurement of paclitaxel. J. Immunol. Methods 313: 191–198 (2006)

    Article  CAS  Google Scholar 

  7. Jakoby B, Vellekoop MJ. Viscosity sensing using a Love-wave device. Sensor. Actuat. A-Phys. 68: 275–281 (1998)

    Article  Google Scholar 

  8. McMullan C, Mehta H, Gizeli E, Lowe CR. Modeling of the mass sensitivity of the Love wave SAW device in the presence of a viscous liquid. J. Phys. D: Appl. Phys. 33: 3053–3059 (2000)

    Article  CAS  Google Scholar 

  9. Saha K, Bender F, Rasmusson A, Gizeli E. Probing the viscoelasticity and mass of a surface-bound protein layer with an acoustic waveguide device. Langmuir 19: 1304–1311 (2003)

    Article  CAS  Google Scholar 

  10. Gizeli E, Bender F, Rasmusson A, Saha K, Josse F, Cernosek R. Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties. Biosens. Bioelectron. 18: 1399–1406 (2003)

    Article  CAS  Google Scholar 

  11. Gizeli E, Liely M, Lowe CR, Vogel H. Antibody binding to a functionalized supported lipid layer: A direct acoustic immunosensor. Anal. Chem. 69: 4808–4813 (1997)

    Article  CAS  Google Scholar 

  12. Harding GL, Du J, Dencher PR, Barnett D, Howe E. Love wave SAW acoustic immunosensor operating in liquid. Sensor. Actuat. APhys. 61: 279–286 (1997)

    Article  Google Scholar 

  13. Bender F, Cernosek RW, Josse F. Love-wave biosensors using cross-linked polymer waveguides on LiTaO3 substrates. Electron. Lett. 36: 1672–1673 (2000)

    Article  CAS  Google Scholar 

  14. Branch DW, Brozik SM. Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36° YX LiTaO3. Biosens. Bioelectron. 19: 849–859 (2004)

    Article  CAS  Google Scholar 

  15. Lee HJ, Namkoong K, Cho EC, Ko C, Park JC, Lee SS. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples. Biosens. Bioelectron. 24: 3120–3125 (2009)

    Article  CAS  Google Scholar 

  16. Saha K, Bender F, Gizeli E. Comparative study of IgG binding to proteins G and A: Nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Anal. Chem. 75: 835–842 (2003)

    Article  CAS  Google Scholar 

  17. Thompson M, Hayward GL. Mass response of the thickness-shear mode acoustic wave sensor in liquid as a central misleading dogma. pp.114–119. In: Proceedings of the 1997 IEEE International Frequency Control Symposium. May 28–30. New York, USA. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, New York, NY, USA (1997)

    Google Scholar 

  18. Weiss M, Welsch W, Schickfus MV, Hunklinger S. Viscoelastic behavior of antibody films on a shear horizontal acoustic surface wave sensor. Anal. Chem. 70: 2881–2887 (1998)

    Article  CAS  Google Scholar 

  19. Gizeli E. Study of the sensitivity of the acoustic waveguide sensor. Anal. Chem. 72: 5967–5972 (2000)

    Article  CAS  Google Scholar 

  20. Du J, Harding GL, Ogilvy JA, Dencher PR, Lake M. A study of Love-wave acoustic sensors. Sensor. Actuat. A-Phys. 56: 211–219 (1996)

    Article  Google Scholar 

  21. Martin F, Newton MI, McHale G, Melzack KA, Gizeli E. Pulse mode shear horizontal-surface acoustic wave system for liquid based sensing applications. Biosens. Bioelectron. 19: 627–632 (2004)

    Article  CAS  Google Scholar 

  22. McHale G, Newton MI, Martin F. Theoretical mass sensitivity of Love wave SAW and layer guided acoustic plate mode sensors. J. Appl. Phys. 91: 9701–9710 (2002)

    Article  CAS  Google Scholar 

  23. Sun Y, Song D, Li Z, Bai Y, Zhang H. Surface plasmon resonance biosensor based on Hg/Ag-Au film. Anal. Bioanal. Chem. 387: 1875–1882 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Bok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, KB. & Kim, YI. Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor. Food Sci Biotechnol 20, 1413–1418 (2011). https://doi.org/10.1007/s10068-011-0194-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0194-3

Keywords

Navigation