[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mechanisms of large-scale landslides in China

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Large-scale landslides in western China are famous for their size, complex formation mechanism and serious destruction. Data were collected from some typical large-scale landslides in mainland China in the 20th century. A number of geo-mechanical models have been identified: the “three sections” model (sliding; tension cracking; shearing), “retaining wall collapse”, “horizontal-pushing” in horizontal strata; large-scale toppling in counter-inclined strata; the creep-bending–shearing model etc. Large-scale rock landslides are generally accompanied by sudden brittle failure of the “locking section” along the potential sliding surface. The paper discusses the importance of this “locking section” which is key to assessing slope geohazard and to the development of control/mitigation measures.

Résumé

Les glissements de terrain de grande ampleur de l’ouest de la Chine sont connus pour leur taille, les mécanismes complexes de rupture et les dommages importants associés. Des données ont été rassemblées concernant des glissements de terrain de grande ampleur en Chine au 20ème siècle. Plusieurs modèles géomécaniques ont été identifiés : le modèle « à trois sections » (glissement; fissuration par mise en traction; cisaillement), le modèle de type « effondrement de mur de soutènement », le modèle de type « poussée horizontale » dans un multicouche horizontal, le basculement à grande échelle dans des formations à pendage contraire à la pente, le modèle avec fluage-flexion-cisaillement, etc. Il correspond souvent aux glissements de grande ampleur des processus de rupture fragile soudaine au niveau d’une « section de blocage » le long de la surface potentielle de glissement. L’article discute de l’importance de cette « section de blocage » qui représente une notion clé pour évaluer le risque de glissement et définir des mesures de surveillance et de confortement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Au SWC (1998) Rain-induced slope instability in Hong Kong. Eng Geol 51(1):1–36

    Article  Google Scholar 

  • Baum RL, Crone AJ, Escobar D, Harp EL et al (2001) Assessment of landslide hazards resulting from the February 13, 2001, El Salvador Earthquake—A Report to the Government of El Salvador and the U.S. Agency for International Development. U.S. Geological Survey Open-File Report 01-0119, Version 1.0, p 22

  • Bhasin R, Grimstad E, Larsen JO et al (2002) Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng Geol 64(4):351–368

    Article  Google Scholar 

  • Broadbent CD, Ko KC (1971) Rheology aspects of rock slope failure. Proc of 13th Symp on Rock Mechanics, Illionis, pp 537–572

  • Brückl EP (2001) Cause-effect models of large landslides. Nat Hazards 23(2–3):291–314

    Article  Google Scholar 

  • Chen ZS, Kong JM (1991) A catastrophic landslide of Sept. 23, 1991 at Touzhaigou of Zhaotong, Yunnan Province. J Mt Res 9(4):265–268

    Google Scholar 

  • Collison A, Wade S, Griffiths J et al (2000) Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 55(3):205–218

    Article  Google Scholar 

  • Crosta GB (2001) Failure and flow development of a complex slide: the 1993 Sesa landslide. Eng Geol 59(1–2):173–199

    Article  Google Scholar 

  • Duan YH (1999) Basic characters of geo-hazards and its development trend in China. Quat Sci 19(3):208–216

    Google Scholar 

  • Duan YH (2000) Present state, trend and countermeasure of geological hazards in Chinese West. Econ res ref 58(2):12–18

    Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31(2):261–272

    Article  Google Scholar 

  • The U.S. Geological Survey (2000) Landslide hazards. USGS Fact Sheet Fs-071-00

  • Hang ZY, Huang RQ (1990) Epigenetic recreation of rockmass structure and time-dependent deformation. In: Proc of the 6th Cong of IAEGE, A. A. Balkema, pp 2065–2072

  • Huang RQ (1996a) Studies of the geological model and formation mechanism of Xikou landslide. In: Proc of the 7th Inter Symp on Landslides. A. A. Balkema, pp 1671–1678

  • Huang RQ (1996b) Full-course numerical simulation of hazardous landslides and falls. In: Proc of the 7th Inter Symp on Landslides. A. A. Balkema, pp 1134–1140

  • Huang RQ, Chen LS (2004) Human induced landslide in China: mechanism study and its implications on slope management. Chin J Rock Mech Eng 23(16):2766–2777

    Google Scholar 

  • Huang RQ, Zhang ZY, Wang ST (1991) Systematic engineering geology studying of the stability of high slope. Chengdu University of Technology Press

  • Huang RQ, Deng RG et al (1993) Full simulation process for high slope substance moving. Chengdu University of Technology Press, Chengdu

    Google Scholar 

  • Huang RQ, Wang ZR, Xu Q (1994a) A study of failure rules of anti-dip strata slopes, Advance of Engineering Geology (No. 2). Southwest Jiaotong University Press, Chengdu, pp 47–51

    Google Scholar 

  • Huang RQ, Zhang ZY, Wang ST (1994b) Research on rock structure and epigenetic reformation. Hydrogeol Eng Geol 21(4):17–21

    Google Scholar 

  • Huang RQ, Wang ST, Zhang ZY et al (2002a) Shallow earth crust dynamics process and engineering environment research in Western China. Sichuan University Press, Chengdu

    Google Scholar 

  • Huang ZZ, Tang RC, Liu SL (2002b) Re-discussion of the Seismogenic Structure of the Diexi Large Earthquake in 1933 and the Arc Tectonics on Jiaochang, Sichuan Province. Earthq Res China 18(2):183–192

    Google Scholar 

  • Huang RQ, Zhao SJ, Song XB (2005) The formation and mechanism analysis of Tiantai landslide, Xuanhan County, Sichuan Province. Hydrogeol Eng Geol 32(1):13–15

    Google Scholar 

  • Hutchinson JN, Chandler MP (1991) A preliminary landslide hazard zonation of the undercliff of the Isle of Wight. In: Chandler RJ (ed) Slope stability engineering, development and applications. Proc Int Conf On Slope stability, Isle of Wight, 15–18 April, Thomas Telford, pp 197–206

  • Jiang CS (2000) Present state and prevention of China’s geological disasters. Chin Geol 48(4):3–5

    Google Scholar 

  • Jin DS (1998) Laojinshan landslide in Yuanyang, Yunnan Province. Chin J Geol Hazard Control 9(4):98–101 (80)

    Google Scholar 

  • Leng L, Leng RH (2002) Flood in Yalong River and its historical lesson. Sichuan Water Conserv 23(2):42–44

    Google Scholar 

  • Li N (1992) Landfall-landslide blocking river disasters and its prevention measures in Yunnan Province[C]. Commission of Proceedings of Landslides edn. Proceedings of Landslides (No. 9), China Railway Publishing House, Beijing, pp 50–55

  • Li YC (2002) On-the-spot record of Diexi Earthquake. Lit Hist World 3(6):39–42

    Google Scholar 

  • Li TB, Chen MD, Wang LS (1999) Real-time following prediction of the landslides. Chengdu University of Technology Press, Chengdu

    Google Scholar 

  • Lin DM, Pi LY, Huang HL et al (2002a) Study on engineering-geological conditions for landslide at Badu k343 section Nankun railway and control on it. J Eng Geol 10(2):220–224

    Google Scholar 

  • Lin PS, Lin JY, Hung JC et al (2002b) Assessing debris-flow hazard in a watershed in Taiwan. Eng Geol 66(3–4):295–313

    Article  Google Scholar 

  • Lo KY, Wai RSC (1978) Time dependent deformation of shaly rocks in southern Ontario. Can Geotech J 15(4):537–547

    Article  Google Scholar 

  • Mauritsch HJ, Seiberl W, Arndt R et al (2000) Geophysical investigations of large landslides in the Carnic Region of southern Austria. Eng Geol 56(3–4):373–388

    Article  Google Scholar 

  • Parise M, Wasowski J (1999) Landslide activity maps for landslide hazard evaluation: three case studies from Southern Italy. Nat Hazards 20(2–3):159–183

    Article  Google Scholar 

  • Radbruch-Hall DH, Colton RB, Davies WE et al (1982) Landslide overview map of the United States. In: United States Geological Survey Professional Paper, p 1183

  • Raetzo H, Lateltin O, Bollinger D et al (2002) Hazard assessment in Switzerland—codes of practice for mass movements. Bull Eng Geol Environ 61:263–268

    Article  Google Scholar 

  • Schuster RL (1996) The 25 most catastrophic landslides of the 20th century. In: Chacon, Irigaray, Fernandez (eds) Landslides, Proc Of the 8th Int Conf and Field Trip on Landslides, Granada, Spain, 27–28 Sept. Balkema, Rotterdam

  • Schuster RL, Lynn MH (2001) Socioeconomic impacts of landslides in the Western Hemisphere. U.S. Geological Survey Open-file Report, 01-9276

  • Staub IB (2001) A methodology for the mapping and analysis of “debris-flow initiation” hazard—application to the Bragousse torrent (France). Bull Eng Geol Environ 59(4):319–327

    Article  Google Scholar 

  • Sun DY (2000) Project regulation of Badu Landslide in Nan-Kun Railway. Chinese railway press, Beijing

    Google Scholar 

  • Sun T, Chen Y (2001) Application of finite element technique to analyzing the slope stability—evaluation the stability of the Jiaochang talus slide in Tianlonghu hydropower station. Sichuan Water Power 20(1):28–31

    Google Scholar 

  • Varnes DJ, Savage WZ (1996) The Slumgullion Earth flow: a large-scale natural laboratory, U.S. Geological Survey Bulletin 2130. Washington: United States government printing office (available at: http://pubs.usgs.gov/bul/b2130/)

  • Voight B, Faust C (1992) Frictional heat and strength loss in some rapid landslides: error correction and affirmation of mechanism for the Vaiont landslide. Geotechnique 42:641–643

    Article  Google Scholar 

  • Walton G, Atkinson T (1978) Some geotechnical considerations in the planning of surface coal mines. Trans Inst Min Metall 87:147–171

    Google Scholar 

  • Wang SJ (1992) The deformation mechanism and process research of Jinchuan strip mine slope. Chin J Geotech Eng 14(1):1–7

    Google Scholar 

  • Wang SJ (1999) Tasks and future of engineering geology. J Eng Geol 7(3):195–199

    Article  Google Scholar 

  • Wang LS, Zhang ZY (1983) The basic geological mechanism model of slope rock body deformation and destruction. In: Collections of hydrological and engineering geology, Geological Publishing House Press, Beijing

  • Wang ST, Huang RQ, Li YS (1995) Key engineering geology problems and research on Jinping Hydropower Station in Yalongjiang River. Chengdu University of Science and Technology Press, Chengdu (in Chinese)

    Google Scholar 

  • Wu WJ, Wang SY (1989) The mechanism of Saleshan Landslide. National landslide conference—landslides. Sichuan Science and Technology Press, Chengdu, pp 184–189

    Google Scholar 

  • Wu C, Ran HX, Zhen YH et al (1996) Hydrograph of the dam-break flood of the reservoir formed by mountain collapse in Ya Longjiang. J Hydrodyn (A) 11(6):646–652

    Google Scholar 

  • Xu BD, Pan HT (1992) The effect of coal mining on Kengkou and Hancheng power plants slope[C]//Commission of Proceedings of Landslides ed. Proceedings of Landslides (No. 9). China Railway Publishing House, Beijing, pp 1–9

  • Xu DJ, Chen CX, Liu XW et al (1999) Study on prediction of rock slopes. Chin J Rock Mech Eng 18(4):369–372

    Google Scholar 

  • Yamagishi H (2000) Recent Landslides in Western Hokkaido, Japan. Pure Appl Geophys 157(6–8):1115–1134

    Article  Google Scholar 

  • Yin YP (2000) The research on characteristics of rapid huge landslide in Yigong River in the Bomi, Tibet and disaster relief. Hydrogeol Eng Geol 27(4):8–11

    Google Scholar 

  • Yin YP (2001) A review and vision of geological hazards in China. Manage Geol Sci Technol 18(3):26–29

    Google Scholar 

  • Yin SL, Han ZS, Li ZZ (2000) Progress of landslide researches in the world. Hydrogeol Eng Geol (5):1–4

  • Záruba Q, Mencl V (1969) Landslides and their control. Elsevier-Academia, Amsterdam

    Google Scholar 

  • Zhang ZY (2000) The present status, technical advance and development trends of landslide remedial measures. J Geol Hazards Environ Preserv 11(2):89–97

    Google Scholar 

  • Zhang ZY, Liu HC (2001) A special case history of the environmental impact by undergound mining—the mechanism and control measures of the ground upheaval deformation of Hancheng power plant. Earth Sci Frontiers 8(2):285–295

    Google Scholar 

  • Zhang ZY, Liu HC (1990) Key engineering geology problem and research on Longyangxia Hydropower Station of Huanghe River. Chengdu University of Technology Press, Chengdu

    Google Scholar 

  • Zhang ZY, Wang ST, Wang LS (1994) Principle of engineering geology analysis. Geological Publishing House Press, Beijing

  • Zhong LX (1999) Case study on significant geohazards in China. Chin J Geol Hazard Contr 10(3):1–10

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the State Key Laboratory Research Fund from SKLGP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqiu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R. Mechanisms of large-scale landslides in China. Bull Eng Geol Environ 71, 161–170 (2012). https://doi.org/10.1007/s10064-011-0403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0403-6

Keywords

Navigation