[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Incorporating diffuse photosynthetically active radiation in a single-leaf model of canopy photosynthesis for a 56-year-old Douglas-fir forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

A simple top-down model of canopy photosynthesis (P) was developed and tested in this study. The model (referred to as the Qe-MM model) is P = αQ e P max/(αQ e + P max), α and P max are quantum-use efficiency and potential P, respectively. Q e is given by Q d 0 + kQ b 0, where Q d 0 and Q b 0 are the diffuse and direct photosynthetically active radiation (PAR) incident on the canopy, respectively. Q e can be considered to be the effective incident PAR contributing to P and k is a measure of the contribution of Q b 0 to Q e. When k = 1, the Qe-MM model becomes the regular Michaelis-Menten type model of P (referred to as the MM model). A major objective of this study was to determine how well the Qe-MM model could estimate P of a 56-year-old coastal Douglas-fir stand. To this end, we parameterized the Qe-MM model using five and half years of eddy-covariance measurements of CO2 flux above the Douglas-fir stand. The Qe-MM model, with the incorporation of a function of air temperature, accounted for 74% of the variance in over 34,000 half-hourly P measurements. P estimated using the Qe-MM model had no systematic errors with respect to Q d 0. Although the Qe-MM model has only one more parameter than the MM model, it accounted for 30% more variance in P than the latter when total incident PAR exceeded 900 μmol m−2 s−1. On average, k was found to be 0.22. We show that this small value of k reflects the significant effect of the scattering of the solar beam and the fraction of light-limited sunlit leaves. We also show that the success of the Qe-MM model was due to the fact that a large fraction of the sunlit leaves were light-limited as a result of their orientation to the solar beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a–d
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 a,b

Similar content being viewed by others

References

  • Anderson MC, Norman JM, Meyers TP, Diak GR (2000) An analytical model for estimating canopy transpiration and carbon assimilationfluxes based on canopy light-use efficiency. Agric For Meteorol 101:265–289

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492 doi:10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric For Meteorol 126:237–255 doi:10.1016/j.agrformet.2004.06.011

    Article  Google Scholar 

  • Black TA, Chen J-M, Lee X, Sagar RM (1991) Characteristics of shortwave and longwave irradiances under a Douglas-fir stand. Can J For Res 21:1020–1028 doi:10.1139/x91-140

    Article  Google Scholar 

  • Brodersen CR, Vogelmann TC, Williams WE, Gorton HL (2008) A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ 31:159–164

    PubMed  CAS  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York

  • Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at Fluxnet Canada forest sites. Agric For Meteorol 140:257–268 doi:10.1016/j.agrformet.2006.08.005

    Article  Google Scholar 

  • Choudhury BJ (2000) A sensitivity analysis of the radiation use efficiency for gross photosynthesis and net carbon accumulation by wheat. Agric For Meteorol 101:217–234 doi:10.1016/S0168-1923(99)00156-2

    Article  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557 doi:10.1111/j.1365-3040.1997.00094.x

    Article  Google Scholar 

  • de Wit CT (1965) Photosynthesis of leaf canopies. Centre for Agricultural Publications and Documents, Wageningen

  • Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T, Morgenstern K (2002) Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agric For Meteorol 110(4):299–317 doi:10.1016/S0168-1923(01)00294-5

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA (2006) Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.Plant Cell Environ 29:2168–2184

    Article  PubMed  CAS  Google Scholar 

  • Forseth IN, Norman JM (1993) Modelling of solar irradiance, leaf energy budget and canopy photosynthesis. In: Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman and Hall, New York, pp 207–219

  • Freedman JM, Fitzjarrald DR, Moore KE, Sakai RK (2000) Boundary layer clouds and vegetation—atmosphere feedbacks. J Clim 14:180–197 doi:10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2

    Article  Google Scholar 

  • Goudriaan J (1977) Crop micrometeorology and a simulation study. Centre for Agricultural Publications and Documents, Wageningen

  • Goudriaan J, van Laar HH (1994) Modelling potential crop growth processes—textbook with exercises. Kluwer, Amsterdam

  • Goulden ML, Miller SD, Rocha HRD, Menton MC, Freitas HCD, Figueira AMES, Sousa CADD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14:S42–S54 doi:10.1890/02-6008

    Article  Google Scholar 

  • Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107. doi:10.1029/2001JD001242

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038 doi:10.1126/science.1078366

    Article  PubMed  Google Scholar 

  • Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75(1):134–150 doi:10.2307/1939390

    Article  Google Scholar 

  • Hollinger DY, Kelliher FM, Schulze E-D, Bauer G, Arneth A, Byers JN, Hunt JE, McSeveny TM, Kobak KI, Milukova I, Sogatchev A, Tatarinov F, Varlargin A, Ziegler W, Vygodskaya NN (1998) Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agric For Meteorol 90:291–306 doi:10.1016/S0168-1923(98)00057-4

    Article  Google Scholar 

  • Humphreys ER, Black TA, Ethier GJ, Drewitt GB, Spittlehouse DL, Jork E-M, Nesic Z, Livingston NJ (2003) Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada. Agric For Meteorol 115:109–125 doi:10.1016/S0168-1923(02)00171-5

    Article  Google Scholar 

  • Hutchison BA, Matt DR (1976) Beam enrichment of diffuse radiation in a deciduous forest. Agric Meteorol 17:93–110 doi:10.1016/0002-1571(76)90025-X

    Article  Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous andevergreen forests. In: Encyclopedia of plant physiology, vol 12D.Physiological plant ecology: productivity and ecosystem processes. Springer, Berlin. pp 234–280

  • Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith M-L (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric For Meteorol 143:64–79 doi:10.1016/j.agrformet.2006.11.008

    Article  Google Scholar 

  • Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochem Cycles 15(2):453–465 doi:10.1029/2000GB001281

    Article  CAS  Google Scholar 

  • June T, Evans JR, Farquhar GD (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct Plant Biol 31(3):275–283 doi:10.1071/FP03250

    Article  CAS  Google Scholar 

  • Lindroth A, Grelle A, Moren A-S (1998) Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob Change Biol 4:443–450 doi:10.1046/j.1365-2486.1998.00165.x

    Article  Google Scholar 

  • Monteith J (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766 doi:10.2307/2401901

    Article  Google Scholar 

  • Morgenstern K, Black TA, Humphreys ER, Griffis TJ, Drewitt GB, Cai T, Nesic Z, Spittlehouse DL, Livingston NJ (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric For Meteorol 123:201–219 doi:10.1016/j.agrformet.2003.12.003

    Article  Google Scholar 

  • Norman JM (1979) Modeling the complete crop canopy. In: Barfield BJ, Gerber JF (eds) Modification of the aerial environment of plants. American Society of Agricultural Engineers, St. Joseph, pp 249–277

  • Norman JM (1980) Interfacing leaf and canopy light interception models. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models. CRC, Boca Raton, pp 49–67

    Google Scholar 

  • Norman JM (1982) Simulation of microclimates. In: Hatfield JL, Thomason IJ (eds) Biometeorology in integrated pest management. Academic, New York, pp 65–99

    Google Scholar 

  • Norman JM, Arkebauer TJ (1991) Predicting canopy light-use efficiency from leaf characteristics. In: Hanks J, Ritchie J (eds) Modeling plant and soil systems. Agronomy Monograph. ASA-CSSA-SSSA, Madison, pp 125–143

    Google Scholar 

  • Norman JM, Jarvis PG (1974) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) III: measurements of canopy structure and interception of radiation. J Appl Ecol 11(1):375–398 doi:10.2307/2402028

    Article  Google Scholar 

  • Oker-Blom P (1985) Photosynthesis of a Scots pine shoot: simulation of the irradiance distribution and photosynthesis of a shoot in different radiation fields. Agric For Meteorol 34:31–40 doi:10.1016/0168-1923(85)90052-8

    Article  Google Scholar 

  • Palmroth S, Palva L, Stenberg P, Kotisaari A (1999) Fine scale measurement and simulation of penumbral radiation formed by a pine shoot. Agric For Meteorol 95:15–25 doi:10.1016/S0168-1923(99)00024-6

    Article  Google Scholar 

  • Price DT, Black TA (1990) Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile Douglas-fir stand. Agric For Meteorol 50:139–158 doi:10.1016/0168-1923(90)90050-G

    Article  Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30 doi:10.1007/s004420100760

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for GCMs. Part I: Model formulation. J Clim 9(4):676–705 doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2

    Google Scholar 

  • Sinclair TR, Murphy CE, Knoerr KR (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J Appl Ecol 13:813–829 doi:10.2307/2402257

    Article  Google Scholar 

  • Smolander H, Oker-Blom P, Ross J, Kellomaki S, Lahti T (1987) Photosynthesis of a Scots pine shoot: test of a shoot photosynthesis model in a direct radiation field. Agric For Meteorol 39:67–80 doi:10.1016/0168-1923(87)90017-7

    Article  Google Scholar 

  • Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. components of incoming radiation. Agric For Meteorol 38:217–229 doi:10.1016/0168-1923(86)90060-2

    Article  Google Scholar 

  • Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107:255–278 doi:10.1016/S0168-1923(00)00241-0

    Article  Google Scholar 

  • Thornley JHM (2002) Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and acclimated non-rectangular hyperbola for leaf photosynthesis. Ann Bot (Lond) 89:451–458 doi:10.1093/aob/mcf071

    Article  CAS  Google Scholar 

  • Wang YP, Jarvis PG (1990) Effect of incident beam and diffuse radiation on PAR absorption, photosynthesis, and transpiration of sitka spruce—a simulation study. Silva Carelica 15:167–180

    CAS  Google Scholar 

  • Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA (2003) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ 26:1215–1227 doi:10.1046/j.1365-3040.2003.01044.x

    Article  CAS  Google Scholar 

  • Wood J, Muneer T, Kubie J (2003) Evaluation of a new photodiode sensor for measuring global and diffuse irradiance, and sunshine duration. J Sol Energ Eng 125:43–48 doi:10.1115/1.1531149

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by a Forest Renewal British Columbia (FRBC) grant from the British Columbia Science Council, a Natural Sciences and Engineering Research Council (NSERC) research operating grant, a NSERC strategic projects grant, and through funding for the Fluxnet-Canada Research Network (NSERC, BIOCAP, Canadian Foundation for Climate and Atmospheric Sciences). T.C. received support through an NSERC Postgraduate Scholarship and a University Graduate Fellowship (UGF) from the University of British Columbia. We sincerely thank Profs. John Norman (University of Wisconsin), Jan Goudriaan (Wageningen University) and Michael Unsworth (Oregon State University) for their extremely insightful comments on an earlier draft of this manuscript. Their comments greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiebo Cai.

Appendix: list of symbols and acronyms

Appendix: list of symbols and acronyms

γ :

angle of incidence between the solar beam and a normal to the leaf surface

\(\overline {\cos \gamma _1 } \) :

average of all the cosγ values for all the light-limited sunlit leaves

γ Threshold :

maximum angle of incidence below which sunlit leaves become light-saturated

\(\overline {\cos \gamma _{Threshold} } \) :

average of all the cos γ Threshold values at different canopy depth

\(\overline {\Delta \cos \gamma _{Threshold} } \) :

difference between \(\overline {\cos \gamma } \) for the light-saturated sunlit leaves and \(\overline {\cos \gamma _{Threshold} } \)

f shd():

fraction of the shaded leaves at canopy depth

f sun_LightLimited():

fraction of the light-limited sunlit leaves at canopy depth

f sun_LightSaturated():

fraction of the light-saturated sunlit leaves at canopy depth

α :

quantum-use efficiency, μmol (CO2) μmol−1 (quanta)

α 0 :

quantum-use efficiency as used in the LUE model, μmol μmol−1

α d, α b :

quantum-use efficiency for diffuse PAR (α d) and direct PAR (α b), respectively as used in the m-MM model, μmol (CO2) μmol−1 (quanta)

α M :

quantum-use efficiency for total PAR as used in the MM model

β :

solar elevation angle

σ :

leaf scattering coefficient for PAR including reflected and transmitted PAR

σ′:

canopy scattering coefficient

ϕ :

a curvature parameter for the photosynthetic light response curve

A j :

rate of photosynthesis limited by RuBP regeneration, μmol m−2 s−1

A v :

rate of photosynthesis limited by Rubisco, μmol m−2 s−1

D :

vapour pressure deficit, kPa

F C :

half-hourly CO2 flux, μmol m−2 s−1

F S :

rate of change in CO2 storage (the “storage flux”) in the air column beneath the eddy-covariance sensors, μmol m−2 s−1

k :

a fraction of Q d 0 added to Q b 0 to give Q e, i.e., Q e = Q d 0 + kQ b 0

k 0 :

a fraction used to modify α

k 1 :

fraction of the sunlit leaves that are light limited

K b :

extinction coefficient for direct PAR assuming total absorption of PAR

\(K_b^\prime \) :

extinction coefficient for direct PAR for green leaves, \(K_b \prime = K_b \sqrt {1 - \sigma } \)

K n :

vertical nitrogen extinction coefficient as used in the sun/shade model

LAI and L :

leaf area index, m2 (leaf area) m−2 (ground area)

L sun :

total LAI for sunlit leaves

L sun_LightLimited :

total LAI for light-limited sunlit leaves

L sun_LightSaturated :

total LAI for light-saturated sunlit leaves

:

cumulative LAI from canopy top. was used as a variable in scaling photosynthesis from leaf-level to canopy-level

NEE:

net ecosystem exchange, μmol m−2 s−1

NEP:

net ecosystem production, μmol m−2 s−1

P :

rate of canopy photosynthesis (same as gross ecosystem photosynthesis), μmol m−2 s−1

PAR:

photosynthetically active radiation, μmol m−2 s−1

P max :

potential photosynthesis rate (the asymptote) as used in the MM and Qe-MM models, μmol m−2 s−1

P maxd, P maxb :

P max for diffuse PAR (P maxd) and direct PAR (P maxb), respectively as used in the m-MM model, μmol m−2 s−1

P sun :

total photosynthesis of all the sunlit leaves, μmol m−2 s−1

P sun_LightLimited :

total photosynthesis of all the light-limited sunlit leaves, μmol m−2 s−1

P sun_LightSaturated :

total photosynthesis of all the light-saturated sunlit leaves, μmol m−2 s−1

Q b(γ):

un-scattered direct PAR absorbed by a sunlit leaf at the angle of incidence of γ, μmol m−2 s−1

Q b 0 :

incident direct PAR above the canopy, μmol m−2 s−1

Q b 1(γ):

un-scattered direct PAR absorbed by the light-limited sunlit leaves, μmol m−2 s−1

Q ba_sun :

un-scattered direct PAR absorbed by the big sunlit leaf as in the sun/shade model, μmol m−2 s−1

Q bThreshold :

maximum un-scattered direct PAR absorbed by a light-limited sunlit leaf at canopy depth (see Fig. 1b), Q bThreshold = max[Q b 1(γ)], μmol m−2 s−1

ΔQ bThreshold :

difference between the un-scattered direct PAR absorbed by the light-saturated sunlit leaves and Q bThreshold (i.e., ΔQ bThreshold = Q b(γ) − Q bThreshold), μmol m−2 s−1

Q d():

absorbed sky diffuse PAR at canopy depth , μmol m−2 s−1

Q d 0 :

incident sky diffuse PAR above the canopy, μmol m−2 s−1

Q e :

effective amount of PAR contributing to P (Q e = Q d 0 + kQ b 0), μmol m−2 s−1

Q p :

amount of direct PAR perpendicular to the solar beam, μmol m−2 s−1

Q s():

absorbed scattered direct PAR at canopy depth , μmol m−2 s−1

Q sat :

the amount of Q ta at canopy depth above which the quantum-use efficiency for absorbed PAR decreases (see Fig. 1b), Q sat = Q d() + Q s() + Q bThreshold, μmol m−2 s−1

Q t 0 :

incident total PAR above the canopy, μmol m−2 s−1

Q ta :

absorbed total PAR, μmol m−2 s−1

Q x :

Q x = Q d 0 + xQ b 0, used in Fig. 2 to test the effect of adding varying fractions of Q d 0 to Q b 0 on canopy P, when x = k, Q x = Q e, μmol m−2 s−1

r 2 :

coefficient of determination

Rubisco:

ribulose-1,5-biphosphate carboxylase/oxygenase

RuBP:

ribulose biphosphate

s c :

CO2 mixing ratio, mol CO2 mol−1 of dry air

T a :

air temperature, °C

V cmax 25 :

Rubisco capacity at 25°C as used in the sun/shade model, μmol m−2 s−1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, T., Black, A., Jassal, R.S. et al. Incorporating diffuse photosynthetically active radiation in a single-leaf model of canopy photosynthesis for a 56-year-old Douglas-fir forest. Int J Biometeorol 53, 135–148 (2009). https://doi.org/10.1007/s00484-008-0196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-008-0196-x

Keywords

Navigation