[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Assmann E (1961) Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, München

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford

    Google Scholar 

  • Badoux E (1946) Krone und Zuwachs. Mitt Schweiz Anst Forstl Versuchswesen 24:405–513

    Google Scholar 

  • Bauhus J, van Winden AP, Nicotra AB (2004) Above-ground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34:686–694

    Article  Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56:485–488

    Article  Google Scholar 

  • Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manag 193:5–16

    Article  Google Scholar 

  • Binkley D, Campoe OC, Gspaltl M, Forrester DI (2011) Light absorption and use efficiency in forests: Why patterns differ for trees and stands. For Ecol Manage. doi:10.1016/j.foreco.2011.11.002

  • Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J For Res 125:15–26

    Article  Google Scholar 

  • Bremer M, Jochem A, Rutzinger M (2012) Comparison of branch extraction for deciduous single trees in leaf-on and leaf-off conditions—an eigenvector based approach for terrestrial laser scanning point clouds. EARSeL eProc 11(1):33–43

    Google Scholar 

  • Bucksch AK (2011) Revealing the skeleton from imperfect point clouds. Dissertation, Delft University of Technology

  • Bucksch AK, Lindenbergh R, Menenti M (2010) SkelTre—Robust skeleton extraction from imperfect point clouds. Vis Comput 26:1283–1300

    Article  Google Scholar 

  • Burger H (1939) Holz, Blattmenge und Zuwachs. Mitt Schweiz Anst Forstl Versuchswesen 1939–1953, vol 15–29

  • Côté JF, Fournier RA, Egli R (2011) An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ Model Softw 26:761–777

    Article  Google Scholar 

  • Edelsbrunner H, Mücke EP (1994) Three-Dimensional Alpha Shapes. ACM Transact Graph 13:43–72

    Article  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Fischer A (1995) Forstliche Vegetationskunde. Pareys Studientexte 82. Blackwell Wissenschaft, Berlin, Wien

    Google Scholar 

  • Grams TEE, Lüttge U (2011) Space as a resource. Prog Bot 72:349–370

    Article  Google Scholar 

  • Grams TEE, Kozovits AR, Winkler JB, Sommerkorn M, Blaschke H, Häberle K-H, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4:153–158

    Article  Google Scholar 

  • Hari P (1985) Theoretical aspects of eco-physiolocigal research. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki Univ Press, Helsinki, pp 21–30 336p

    Google Scholar 

  • Hilker T, van Leeuwen M, Coops NC, Wulder MA, Newnham GJ, Jupp DLB, Culvenor DS (2010) Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees 24:819–832

    Article  Google Scholar 

  • Huang P, Pretzsch H (2010) Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest. Trees 24:609–619

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Ann Rev Entomol 28:23–39

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • Maneewongvatana S, Mount D (1999) It’s okay to be skinny, if your friends are fat. In: Proceedings of the 4th Annual CGC Workshop on Computational Geometry

  • Matyssek R, Agerer R, Ernst D, Munch JC, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The Plant’s Capacity in Regulating Resource Demand. Plant Physiol 7:560–580

    CAS  Google Scholar 

  • McCoy ED, Bell SS (1991) Habitat structure: the evolution and diversification of a complex topic. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. London, Chapman & Hall, pp 3–27

    Chapter  Google Scholar 

  • Niklas KJ (1994) Plant Allometry. Univ Chicago Press, Chicago

    Google Scholar 

  • Oldemann RAA (1990) Forests: elements of Silvology. Springer, Berlin

    Book  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H (1992) Modellierung der Kronenkonkurrenz von Fichte und Buche in Rein- und Mischbeständen. AFJZ 163(11/12):203–213

    Google Scholar 

  • Pretzsch H (2003) Diversität und Produktivität von Wäldern. AFJZ 174:88–98

    Google Scholar 

  • Pretzsch H (2006) Species-specific allometric scaling under self-thinning. Evidence from long-term plots in forest stands. Oecologia 146:572–583

    Article  PubMed  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: From measurement to model. Springer, Berlin

    Google Scholar 

  • Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia. doi:10.1007/s00442-011-2240-5

  • Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Seifert S, Huang P (2011) Beitrag des terrestrischen Laserscannings zur Erfassung der Struktur von Baumkronen. Schweiz Z Forstwes 162:186–194

    Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67. doi:10.1051/forest/2010037

  • Price CA, Gilooly JF, Allen AP, Weitz JS, Niklas KJ (2010) The metabolic theory of ecology: prospects and challenges for plant biology. New Phytol 188:696–710

    Article  PubMed  Google Scholar 

  • Purves DW, Lichstein JW, Pacala SW (2007) Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLoS ONE 2:e870. doi:10.1371/journal.pone.0000870

    Article  PubMed  Google Scholar 

  • Ramachandran P, Varoquaux G (2008) Mayavi: making 3D data visualization reusable. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in Science Conference. Pasadena, CA USA, pp 51–56

    Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

    Article  PubMed  Google Scholar 

  • Röhle H, Huber W (1985) Untersuchungen zur Methode der Ablotung von Kronenradien und der Berechnung von Kronengrundflächen. Forstarchiv 56:238–243

    Google Scholar 

  • Roloff A (2001) Baumkronen. Verständnis und praktische Bedeutung eines komplexen Natur-phänomens, Ulmer

    Google Scholar 

  • Seifert T (2003) Integration von Holzqualität und Holzsortierung in behandlungssensitive Waldwachstumsmodelle. Dissertation, Technical University of Munich

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • van Leeuwen M, Hilker T, Coops NC, Frazer G, Wulder MA, Newnham GJ, Culvenor DS (2011) Assessment of standing wood and fiber quality using ground and airborne laser scanning: a review. For Ecol Manag 261:1467–1478

    Article  Google Scholar 

  • von Droste zu Hülshoff B (1969) Struktur und Biomasse eines Fichtenbestandes auf Grund einer Dimensionsanalyse an oberirdischen Baumorganen. Ph.D thesis, LMU München, 209 p

  • Vosselman G, Maas HG (2010) Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath

    Google Scholar 

  • Walter H (1931) Die Hydratur der Pflanzen und ihre physiologisch-ökologische Bedeutung. Gustav Fischer Verlag, Jena

    Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. PNAS 106:7040–7045

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson L, Arlinger J, Spångberg K, Lundqvist SO, Grahn T, Hedenberg Ö, Olsson L (2002) Models for predicting wood properties in Stems of picea abies and pinus sylvestris in Sweden. Scand J For Res 17:330–350

    Article  Google Scholar 

  • Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J For Res 28:106–114

    Article  Google Scholar 

  • Zobel B, van Buijtenen J (1989) Wood Variation—its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

We thank the Bavarian State Ministry for Nutrition, Agriculture and Forestry for permanent support of the project W 07 “Long-term experimental plots for forest growth and yield research” (# 781-20400-2012). Thanks are also due to Dr. Peter Biber for advice on the statistical analysis, Gerhard Schütze for participating in the field work and assistance in the data preparation, Ottilie Arz for assistance in field work, the skeletonization work as well as artwork creation in the course of her master thesis and reviewers for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Bayer.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27, 1035–1047 (2013). https://doi.org/10.1007/s00468-013-0854-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0854-4

Keywords

Navigation