[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Nanoparticle dermal absorption and toxicity: a review of the literature

  • Review Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Introduction

Nanotechnologies are among the fastest growing areas of scientific research and have important applications in a wide variety of fields. The data suggest that in the future workers and consumers exposed to nanoparticles will significantly increase.

Dermal absorption and toxicity of nanoparticles

At now there are gaps in understanding about the human and environmental risk that manufactured nanoparticles pose for occupational exposed people and for consumers. There is a need for assessing the health and environmental impacts, the nanoparticles life cycle, the human exposure routes, the behavior of nanoparticles in the body, and the risk for workers. Possible routes of entry into the body include inhalation, absorption through the skin or digestive tract, injection, and absorption or implantation for drugs delivery systems. In particular, dermal absorption and skin penetration of nanoparticles needs a better evaluation because few and contradictory data are present in the literature, mainly on titanium dioxide.

Conclusions

There are limited data on carbon-based nanoparticles and very few data on other metal nanoparticles increasingly used in industry. The article reviews the literature on the percutaneous absorption of nanoparticles and their effect on skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–62

    Article  PubMed  CAS  Google Scholar 

  • Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report an consensus statement. Inhalation Toxicol 20:75–99

    Article  CAS  Google Scholar 

  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela A (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712

    PubMed  CAS  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  PubMed  CAS  Google Scholar 

  • Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22:271–283

    Article  PubMed  CAS  Google Scholar 

  • Bernstein IA, Vaughan FL (1999) Cultured keratinocytes in in vitro dermatotoxicological investigation: a review. J Toxicol Environ Health B 2:1–30

    Article  CAS  Google Scholar 

  • Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG (2004) The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharmac 269:211–225

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  PubMed  CAS  Google Scholar 

  • Bronaugh RL (2008) Skin penetration of nanoparticles. In: Proceeding of PPP2008, Perspectives in percutaneous penetration, La Grande Motte 25–29th of March 2008, p 1

  • Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348

    PubMed  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  PubMed  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  • Cross SE, Innes B, Roberts M, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464

    Article  PubMed  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  PubMed  CAS  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5

    Article  PubMed  CAS  Google Scholar 

  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    Article  PubMed  CAS  Google Scholar 

  • EPA (2007) Nanotechnology white paper. Prepared for the U.S. Environmental Protection Agency by members of the Nanotechnology Workgroup, a group of EPA’s Science Policy Council Science Policy Council U.S. Environmental Protection Agency Washington, DC

  • Escobar-Chávez JJ, Merino-Sanjuán V, López-Cervantes M, Urban-Morlan Z, Piñón-Segundo E, Quintanar-Guerrero D, Ganem-Quintanar A (2008) The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharmaceut Sci 11:104–130

    Google Scholar 

  • Fiserova-Bergerova V, Pierce JT, Droz PO (1990) Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 17:617–635

    Article  PubMed  CAS  Google Scholar 

  • Franz TJ (1975) On the relevance of in vitro data. J Invest Dermatol 93:633–640

    Google Scholar 

  • Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307

    Article  PubMed  CAS  Google Scholar 

  • Geiser M, Schurch S, Gehr P (2003) Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J Appl Physiol 94:1793–1801

    PubMed  Google Scholar 

  • Geller MD, Kim S, Misra C, Sioutas C, Olson BA, Marple VA (2002) A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Sci Technol 36:748–762

    Article  CAS  Google Scholar 

  • Geys J, Coenegrachts L, Vercammen J, Engelborghs Y, Nemmar A, Nemery B, Hoet PH (2006) In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett 160:218–226

    Article  PubMed  CAS  Google Scholar 

  • Geys J, Nemery B, Hoet PH (2007) Optimisation of culture conditions to develop an in vitro pulmonary permeability model. Toxicol In Vitro 21:1215–1219

    Article  PubMed  CAS  Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818–1825

    PubMed  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60

    Article  PubMed  CAS  Google Scholar 

  • Hoet PHM, Brüske-Hohfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12

    Article  CAS  Google Scholar 

  • Kertész Zs, Szikszai Z, Gontier E, Moretto P, Surlève-Bazeille JE, Kiss B, Juhász I, Hunyadi J, Kiss AZ (2005) Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instr Meth Phys Res B 231:280–285

    Article  CAS  Google Scholar 

  • Kielhorn J, Melching-Kollmuß S, Mangelsdorf I (2006) World Health Organization (WHO), Environmental Health Criteria 235 DERMAL ABSORPTION

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  PubMed  CAS  Google Scholar 

  • Kiss B, Biró T, Czifra G, Tóth BI, Kertész Zs, Szikszai Z, Kiss AZ, Juhász I, Zouboulis CC, Hunyadi J (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol. doi:10.1111/j.1600-0625.2007.00683.x

  • Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412

    Article  PubMed  CAS  Google Scholar 

  • Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide in sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256

    PubMed  CAS  Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiß B, Schaefer UF, Lehr CM, Wepf R, Sterry W (2007) Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66:59–164

    Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004a) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  • Lam PK, Chan ES, Ho WS, Liew CT (2004b) In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci 61:125–127

    PubMed  CAS  Google Scholar 

  • Larese Filon F, Boeninger M, Maina G, Adami G, Spinelli P, Damian A (2006) Skin absorption of inorganic lead and the effects of skin cleansers. J Occup Environ Med 48:692–699

    Article  CAS  Google Scholar 

  • Larese Filon F, Gianpietro G, Venier M, Maina G, Renzi N (2007) In vitro percutaneous absorption of metal compounds. Toxicol Lett 170:49–56

    Article  CAS  Google Scholar 

  • Larese Filon F, D’Agostin F, Bovenzi M, Crosera M, Adami G, Romano C, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37

    Article  CAS  Google Scholar 

  • Leaper DJ (2006) Silver dressing: their role in wound management. Int Wound J 3:282–294

    Article  PubMed  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853–2857

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  PubMed  CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett 5:1676–1684

    Article  PubMed  CAS  Google Scholar 

  • Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and mineral sunscreen. Skin Pharmacol Physiol 20:10–20

    Article  PubMed  CAS  Google Scholar 

  • Menzel F, Reinert T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instr Methods Phys Res B 219–220:82–86

    Article  CAS  Google Scholar 

  • Midander K, Wallinder IO, Leygraf C (2007) In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut 145:51–59

    Article  PubMed  CAS  Google Scholar 

  • Moger J, Johnston BD, Tyler CR (2008) Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Optic Exp 16:3408–3419

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005a) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  PubMed  CAS  Google Scholar 

  • Monteiro-Riviere NA, Wang YY, Hong SM, Inman AO, Nemanich RJ, Tan J (2005b) Proteomic analysis of nanoparticle exposure in human keratinocyte cell culture. Toxicology 84:2183

    Google Scholar 

  • Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S, Rueksomtawin S (2006) Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J Med Assoc Thai 89:953–958

    PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    PubMed  CAS  Google Scholar 

  • NANODERM (2007) Quality of skin as a barrier to ultra-fine particles. Final Report. (Project Number: QLK4-CT-2002-02678) http://www.uni-leipzig.de/~nanoderm/

  • Nasterlack M, Zober A, Oberlinner C (2008) Considerations on occupational medical surveillance in employees handling nanoparticles. Int Arch Occup Environ Health 81:721–726

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JB, Grandjean P (2004) Criteria for skin notation in different countries. Am J Ind Med 45:275–280

    Article  PubMed  Google Scholar 

  • Nielsen JB, Nielsen F, Sørensen JA (2007) Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin. Arch Dermatol Res 299:423–431

    Article  PubMed  Google Scholar 

  • NIOSH, National Institute for Occupational Safety and Health (2007) Progress toward safe nanotechnology in the workplace—a report from the NIOSH Nanotechnology Research Center. DHHS (NIOSH) Pubblication No 2007-123, available on line: http://www.cdc.gov/niosh

  • Ntziachristos L, Ning Z, Geller MD, Sheesley RJ, Schauer JJ, Sioutas C (2007) Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos Environ 41:5684–5696

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörsters E, Oberdörster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H and A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:8

  • Paddle-Ledinek JE, Nasa Z, Cleland HJ (2006) Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 117:110S–118S

    Article  PubMed  CAS  Google Scholar 

  • Pakkanen TA, Kerminen VM, Korhonen CH, Hillamo RE, Aarnio P, Koskentalo T, Maenhaut W (2001) Urban and rural ultrafine (PM0.1) particles in the Helsinki area. Atmos Environ 35:4593–4607

    Article  CAS  Google Scholar 

  • Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958

    Article  PubMed  CAS  Google Scholar 

  • Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773

    Article  PubMed  CAS  Google Scholar 

  • Poon VK, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147

    Article  PubMed  Google Scholar 

  • Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112A

    Article  PubMed  CAS  Google Scholar 

  • Rotoli BM, Bussolati O, Bianchi MG, Barilli A, Balasubramanian C, Bellucci S, Bergamaschi E (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102

    Article  PubMed  CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7:155–160

    Article  PubMed  CAS  Google Scholar 

  • Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA (2008) Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicol In Vitro 22:491–497

    Article  PubMed  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165

    Article  PubMed  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT (2007) Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ foreskin cells. J Nanosci Nanotechnol 7:584–592

    PubMed  CAS  Google Scholar 

  • Sartorelli P, Ahlers HW, Alanko K, Chen-Peng C, Cherrie JW, Drexler H, Kezic S, Johanson G, Larese Filon F, Maina G, Montomoli L, Nielsen JB (2007) How to improve skin notation. Position paper from a workshop. Regul Toxicol Pharmacol 49:301–307

    Article  PubMed  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006a) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Wahi R, Preetha AK, Liu Y, Jennifer LW, Kevin DA, David BW, Vicki LC (2006b) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  PubMed  CAS  Google Scholar 

  • SCCP, Scientific Committee on Consumer Products (2007) Safety of nanomaterials in cosmetic products. Available online dated 19 June 2007: http://www.ec.europa.eu/health/ph_risk/risk_en.htm

  • Scheuplein RJ (1967) Mechanisms of percutaneous absorption, II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88

    PubMed  CAS  Google Scholar 

  • Schulte PA, Geraci C, Zumwalde R, Hoover M, Kuempel E (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Hygiene 5:239–249

    Article  CAS  Google Scholar 

  • Schulz J, Hohenberg H, Pflücker F, Gartner E, Will T, PfeiVer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl. 1):S157–S163

    Article  PubMed  CAS  Google Scholar 

  • Serpone N, Salinaro A, Emeline A (2001) Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA. Efforts to limit DNA damage by particle surface modification. In: Murphy CJ (ed) Nanoparticles & nanostructured surfaces—novel reporters with biological applications. Proc SPIE 4258:86–98

  • Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol 34:949–957

    Article  PubMed  Google Scholar 

  • Shvedova AA, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandlelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of cytotoxicity using human keratinocytes cells. J Toxicol Environ Health 66:1909–1926

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708

    Article  PubMed  CAS  Google Scholar 

  • Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 65:1–10

    Article  PubMed  CAS  Google Scholar 

  • Supp AP, Neely AN, Supp DM, Warden GD, Boyce ST (2005) Evaluation of cytotoxicity and antimicrobial activity of Acticoat burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil 26:238–246

    PubMed  Google Scholar 

  • Tan MH, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37:185–187

    Article  PubMed  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  PubMed  CAS  Google Scholar 

  • The Royal Society & the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. 29 July

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  PubMed  CAS  Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208

    PubMed  CAS  Google Scholar 

  • Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60:648–652

    Article  PubMed  Google Scholar 

  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of Au55 clusters. Small 1:841–844

    Article  PubMed  CAS  Google Scholar 

  • Wamer WG, Yin JJ, Wei RR (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med 23:851–858

    Article  PubMed  CAS  Google Scholar 

  • Witzmann FA, Monteiro-Riviere NA (2006) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine 2:158–168

    PubMed  CAS  Google Scholar 

  • Woodrow Wilson International Center for Scholars (2007) Nanotechnology Consumer Products Inventory. Available: http://www.nanotechproject.org/consumerproducts

  • Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151

    Article  PubMed  Google Scholar 

  • Zhang LW, Zeng L, Barron AR, Monteiro-Riviere NA (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26:103–113

    Article  PubMed  CAS  Google Scholar 

  • Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Crosera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosera, M., Bovenzi, M., Maina, G. et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82, 1043–1055 (2009). https://doi.org/10.1007/s00420-009-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-009-0458-x

Keywords

Navigation