[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The proinflammatory CXC-chemokines GRO-α/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background

Ulcerative colitis is characterized by relapsing mucosal inflammation where the lesions include tissue-damaging granulocytes. In addition, T cells and natural killer (NK) cells play important pathophysiologic roles. Chemokines are a large family of peptides that play key roles in the regulation of inflammation. The CXC-chemokines, growth-related oncogene (GRO)-α/CXCL1 and interleukin (IL)-8/CXCL8, both recruit neutrophils and possess mitogenic properties, whereas the interferon-dependent CXC-chemokines monokine induced by gamma-interferon (MIG)/CXCL9, interferon-γ inducible protein of 10 kD/CXCL10, and IFN-inducible T cell alpha chemoattractant/CXCL11 recruit and activate T cells and NK cells.

Materials and methods

The expression of CXC-chemokines was studied in eight controls and in 11 patients suffering from ulcerative colitis in the distal part of the colon, before and during topical treatment with corticosteroids. Perfusates (obtained before, after 7 days, and after 28 days of treatment) and pinch biopsies (obtained before and after 28 days of treatment) were collected by colonoscopy. The rectal release of GRO-α and MIG was determined by enzyme-linked immunosorbent assay (ELISA), and tissue expression of the chemokines was detected in colonic tissue by immunohistochemistry.

Results

In perfusates, high levels of GRO-α, IL-8, and MIG were detected compared with controls (p = 0.02, 0.005, and p = 0.03, respectively). During treatment with corticosteroids, both GRO-α and MIG decreased. In clinical nonresponders, characterized by sustained inflammation, the levels of GRO-α and MIG remained elevated. Both epithelial cells and granulocytes, present in the submucosa, expressed GRO-α and MIG as detected by immunohistochemistry.

Conclusions

CXC-chemokines are likely to be important in the pathophysiology of ulcerative colitis and may become targets for novel treatment strategies. In addition, GRO-α may serve as a marker of disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  CAS  PubMed  Google Scholar 

  2. Elliott SN, Wallace JL (1998) Neutrophil-mediated gastrointestinal injury. Can J Gastroenterol 12:559–568

    Article  CAS  PubMed  Google Scholar 

  3. Egesten A, Andersson P, Persson T (2002) Eosinophils in gastrointestinal inflammation: from innocent bystanders to offenders. Scand J Gastroenterol 37:1117–1125

    Article  CAS  PubMed  Google Scholar 

  4. Camoglio L, Te Velde AA, Tigges AJ, Das PK, Van Deventer SJ (1998) Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis 4:285–290

    CAS  PubMed  Google Scholar 

  5. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    Article  CAS  PubMed  Google Scholar 

  7. Luster AD (2001) Chemokines regulate lymphocyte homing to the intestinal mucosa. Gastroenterology 120:291–294

    Article  CAS  PubMed  Google Scholar 

  8. Wen DZ, Rowland A, Derynck R (1989) Expression and secretion of gro/MGSA by stimulated human endothelial cells. EMBO J 8:1761–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q, Luster AD (1999) The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol 162:3549–3558

    CAS  PubMed  Google Scholar 

  10. Persson-Dajotoy T, Andersson P, Bjartell A, Calafat J, Egesten A (2003) Expression and production of the CXC chemokine growth-related oncogene-alpha by human eosinophils. J Immunol 170:5309–5316

    Article  CAS  PubMed  Google Scholar 

  11. Jinquan T, Jing C, Jacobi HH, Reimert CM, Millner A, Quan S, Hansen JB, Dissing S, Malling HJ, Skov PS, Poulsen LK (2000) CXCR3 expression and activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. J Immunol 165:1548–1556

    Article  CAS  PubMed  Google Scholar 

  12. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    Article  CAS  PubMed  Google Scholar 

  13. Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, Baggiolini M, Maggi E, Romagnani S, Serio M (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) IFN-inducible ELR CXC chemokines display defensin-like antimicrobial activity. J Immunol 167:623–627

    Article  CAS  PubMed  Google Scholar 

  15. Ekbom A, Helmick C, Zack M, Adami HO (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323:1228–1233

    Article  CAS  PubMed  Google Scholar 

  16. Sangfelt P, Carlson M, Thorn M, Lööf L, Raab Y (2001) Neutrophil and eosinophil granule proteins as markers of response to local prednisolone treatment in distal ulcerative colitis and proctitis. Am J Gastroenterol 96:1085–1090

    Article  CAS  PubMed  Google Scholar 

  17. Binder V (1979) A comparison between clinical state, macroscopic and microscopic appearances of rectal mucosa, and cytologic picture of mucosal exudate in ulcerative colitis. Scand J Gastroenterol 5:627–632

    Google Scholar 

  18. Truelove SC, Richards WC (1956) Biopsy studies in ulcerative colitis. Br Med J 1:1315–13188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford KA, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229

    Article  CAS  PubMed  Google Scholar 

  20. Sangfelt P, Carlson M, Thorn M, Xu S, Loof L, Raab Y (2002) Local release of human neutrophil lipocalin (HNL), IL-8, and TNF-alpha is decreased as response to topical prednisolone treatment in distal ulcerative colitis and proctitis. Dig Dis Sci 47:2064–2069

    Article  CAS  PubMed  Google Scholar 

  21. Keshavarzian A, Fusunyan RD, Jacyno M, Winship D, MacDermott RP, Sanderson IR (1999) Increased interleukin-8 (IL-8) in rectal dialysate from patients with ulcerative colitis: evidence for a biological role for IL-8 in inflammation of the colon. Am J Gastroenterol 94:704–712

    Article  CAS  PubMed  Google Scholar 

  22. Uguccioni M, Gionchetti P, Robbiani DF, Rizzello F, Peruzzo S, Campieri M, Baggiolini M (1999) Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 155:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    CAS  PubMed  Google Scholar 

  24. Egesten A, Eliasson M, Johansson HM, Olin AI, Mörgelin M, Mueller A, Pease JE, Frick IM, Björck L (2007) The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J Infect Dis 195:684–693

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 267:16283–16287

    CAS  PubMed  Google Scholar 

  26. Ahuja SK, Murphy PM (1996) The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem 271:20545–20550

    Article  CAS  PubMed  Google Scholar 

  27. Loukinova E, Dong G, Enamorado-Ayalya I, Thomas GR, Chen Z, Schreiber H, Van Waes C (2000) Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism. Oncogene 19:3477–3486

    Article  CAS  PubMed  Google Scholar 

  28. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172:2853–2860

    Article  CAS  PubMed  Google Scholar 

  29. Pan J, Burdick MD, Belperio JA, Xue YY, Gerard C, Sharma S, Dubinett SM, Strieter RM (2006) CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176:1456–1464

    Article  CAS  PubMed  Google Scholar 

  30. Lang KS, Georgiev P, Recher M, Navarini AA, Bergthaler A, Heikenwalder M, Harris NL, Junt T, Odermatt B, Clavien PA, Pircher H, Akira S, Hengartner H, Zinkernagel RM (2006) Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest 116:2456–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Podolin PL, Bolognese BJ, Foley JJ, Schmidt DB, Buckley PT, Widdowson KL, Jin Q, White JR, Lee JM, Goodman RB, Hagen TR, Kajikawa O, Marshall LA, Hay DW, Sarau HM (2002) A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit. J Immunol 169:6435–6444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for statistical advice from Mikael Åström, technical assistance of Pia Andersson, and linguistic revision by Dr. Alan Chester. The study was supported by grants from The Bergh, Grönberg, Ihre, Julin, Kock, and Österlund foundations.

Competing interests

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Egesten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egesten, A., Eliasson, M., Olin, A.I. et al. The proinflammatory CXC-chemokines GRO-α/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids. Int J Colorectal Dis 22, 1421–1427 (2007). https://doi.org/10.1007/s00384-007-0370-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-007-0370-3

Keywords

Navigation