[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Selenoproteins: the key factor in selenium essentiality. State of the art analytical techniques for selenoprotein studies

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Selenium is an essential element for human health. The benefits of selenium are many including protection against cancer, heart diseases and other cardiovascular and muscle disorders. Selenium is also helpful in controlling gastrointestinal disorders, enhancing immunity of the human body and reducing age-related diseases. The health-promoting properties of Se are due to vital functions of selenoproteins in which selenium is present as selenocysteine, the 21st amino acid. To date, dozens of selenoprotein families have been described though many have roles that have not been fully elucidated. Selenoproteins research has attracted tremendous interest from different scientific areas. Analytical chemists have not remained indifferent to the attractive features of these unique proteins. Different analytical techniques, such as multidimensional chromatography–inductively coupled plasma mass spectrometry (ICPMS), electrospray (tandem) mass spectrometry (ESI-MS/MS), matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) and sodium dodecyl sulphate polyacrylamide gel electrophoresis–laser ablation inductively coupled plasma mass spectrometry (SDS-PAGE-LA-ICPMS), have been applied to the determination of selenoproteins and selenium-containing proteins. This review describes the best-characterized selenoproteins to date in addition to the major contributions of analytical chemistry to the field of selenoproteins. The article also highlights the challenges of combining elemental and molecular mass spectrometry for the determination of selenoproteins and selenium-containing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schwarz K, Foltz CM (1958) J Biol Chem 233:245–251

    CAS  Google Scholar 

  2. Pinsent J (1954) Biochem J 57:10–16

    CAS  Google Scholar 

  3. Papp LV, Lu J, Holmgren A, Khanna KK (2007) Antioxid Redox Signal 9:775–806

    CAS  Google Scholar 

  4. Boosalis MG (2008) Nutr Clin Pract 23:152–160

    Google Scholar 

  5. Lu I, Holmgren A (2009) J Biol Chem 284(2):723–728

    CAS  Google Scholar 

  6. Rayman MP (2000) Lancet 356:233–241

    CAS  Google Scholar 

  7. Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Biochem J 422:11–22

    CAS  Google Scholar 

  8. Latreche L, Chavatte L (2008) Met Ions Biol Med 10:731–737

    Google Scholar 

  9. Rotruck J, Pope A, Ganther HE, Swason AB, Hafeman DG, Hoestra WG (1973) Science 179:588–590

    CAS  Google Scholar 

  10. Flohé L, Gunzler WA, Schock HH (1973) FEBS Lett 32:132–134

    Google Scholar 

  11. Kryukov GV, Castellano S, Novolselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Science 300:1439–1443

    CAS  Google Scholar 

  12. Castellano S (2009) Biochim Biophys Acta 1790:1463–1470

    CAS  Google Scholar 

  13. Arner ESJ (2010) Exp Cell Res 316:1296–1303

    CAS  Google Scholar 

  14. Johansson L, Gafvelin G, Arner ESJ (2005) Biochim Biophys Acta 1726:1–13

    CAS  Google Scholar 

  15. Arthur JR (2000) Cell Mol Life Sci 57:1825–1835

    CAS  Google Scholar 

  16. Rayman MP (2009) Biochim Biophys Acta 1790:1533–1540

    CAS  Google Scholar 

  17. Hoffmann PR (2007) Arch Immunol Ther Exp 55:289–297

    CAS  Google Scholar 

  18. Lillig CH, Holmgren A (2007) Antioxid Redox Signal 9:25–47

    CAS  Google Scholar 

  19. Anestal K, Prast-Nielsen S, Cenas N, Arnér ESJ (2008) PLoS ONE 3(4):1–16

    Google Scholar 

  20. Buettner C, Harney JW, Berry MJ (1999) J Biol Chem 274:21598–21602

    CAS  Google Scholar 

  21. Beckett GJ, Arthur JR (2005) J Endocrinol 184:455–465

    CAS  Google Scholar 

  22. Kohrl J (2000) Cell Mol Life Sci 57:1853–1863

    Google Scholar 

  23. Motsenbocker MA, Tappel AL (1982) Biochim Biophys Acta 719:147–153

    CAS  Google Scholar 

  24. Burk RF, Hill KE (2005) Annu Rev Nutr 25:215–235

    CAS  Google Scholar 

  25. Scharpf M, Schweizer U, Arzberger T, Roggendorf W, Schomburg L, Kohrle J (2007) J Neural Transm 114:877–884

    CAS  Google Scholar 

  26. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan, Yankner BA (2004) Nature 429:883–891

    CAS  Google Scholar 

  27. Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ (2008) J Alzheimers Dis 15:465–472

    CAS  Google Scholar 

  28. Xia Y, Hill KE, Li P, Dingyou Zhou JX, Motley AK, Wang L, Byrne DW, Burk RF (2010) Am J Clin Nutr 92(3):525–531

    CAS  Google Scholar 

  29. Vendeland SC, Beilstein MA, Chen CL, Jensen ON, Barofsky E, Whanger PD (1993) J Biol Chem 268:17103–17107

    CAS  Google Scholar 

  30. Squires JE, Berry MJ (2008) IUBMB Life 60:232–235

    CAS  Google Scholar 

  31. Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL (1998) J Biol Chem 273:8910–8915

    CAS  Google Scholar 

  32. Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN (2000) J Biol Chem 275:35540–35547

    CAS  Google Scholar 

  33. Jablonska E, Gromadzinska J, Sobala W, Reszka E, Wasowicz W (2008) Eur J Nutr 47:47–54

    CAS  Google Scholar 

  34. Panee J, Stoytchev Z, Liu W, Berry M (2007) J Biol Chem 282:23759–23765

    CAS  Google Scholar 

  35. Horibata Y, Hirabayashi Y (2007) J Lipid Res 48:503–508

    CAS  Google Scholar 

  36. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova M, LeRoy JP (2002) Am J Hum Genet 71:739–741

    Google Scholar 

  37. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) Nature 429:841–847

    CAS  Google Scholar 

  38. Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J, Abel Azim DM, Cai G, Mahaney MC, Comuzzie AG (2005) Nat Genet 37:1234–1241

    CAS  Google Scholar 

  39. Reeves MA, Hoffmann PR (2009) Cell Mol Life Sci. doi:10.1007/s00018-009-0032-4

    Google Scholar 

  40. Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J (1996) JAMA 276:1957–1963

    CAS  Google Scholar 

  41. Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GF Jr, Slate EH, Fischbach LA (2002) Cancer Epidemiol Biomarkers Prev 11:630–639

    CAS  Google Scholar 

  42. Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate EH, Jacobs ET, Marshall JR, Clark LC (2003) BJU Int 91:608–612

    CAS  Google Scholar 

  43. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME (2007) Ann Intern Med 147:217–223

    Google Scholar 

  44. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA (2009) JAMA 301:39–51

    CAS  Google Scholar 

  45. Ip C, Dong Y, Ganther HE (2002) Metastasis Rev 21:281–289

    CAS  Google Scholar 

  46. Rayman MP (2005) Proc Nutr Soc 64:527–542

    CAS  Google Scholar 

  47. Brigelius-Flohé R (2008) Chem Biodivers 5:389–395

    Google Scholar 

  48. Irons CD, Carlson BA, Hatfield DL (2006) J Nutr 136:1311–1317

    CAS  Google Scholar 

  49. Hatfield DL, Yoo Min-Hyuk, Carlson BA, Gladyshev VA (2009) Biochim Biophys Acta 1790:1541–1545

    CAS  Google Scholar 

  50. Barnes KM, Evenson JK, Raines AM, Sunde RA (2009) J Nutr 139:199–206

    CAS  Google Scholar 

  51. Sunde RA, Raines AM, Barnes KM, Evenson JK (2008) Biosci Rep 29:329–338

    Google Scholar 

  52. Wang J, Houk RS, Dreessen D, Wiederin DR (1999) J Biol Inorg Chem 4:546–553

    CAS  Google Scholar 

  53. Daun Ch, Lundh T, Onning G, Akesson B (2004) J Anal At Spectrom 19:129–134

    CAS  Google Scholar 

  54. Mounicou S, Mejia J, Caruso J (2004) Analyst 129:116–123

    CAS  Google Scholar 

  55. Palacios O, Ruiz Encinar J, Bertin G, Lobinski R (2005) Anal Bioanal Chem 383:516–522

    CAS  Google Scholar 

  56. Cabañero A, Madrid Y, Cámara C (2005) J Anal Atom Spectrom 20:847–855

    Google Scholar 

  57. Harrison I, Littlejohn D, Fell GS (1996) Analyst 121:189–194

    CAS  Google Scholar 

  58. Papp LV, Lu J, Holmgren A, Khanna KK (2007) Antioxid Redox Signal 9:775–806

    CAS  Google Scholar 

  59. Wang W, Chen Z, Davey DE, Naidu R (2009) Microchim Acta 165(1–2):167–172

    CAS  Google Scholar 

  60. Deng B, Shi A, Li L, Xie F, Lu H, Xu Q (2009) Microchim Acta 165(3–4):279–283

    CAS  Google Scholar 

  61. Jitaru P, Prete M, Cozzi G, Turetta C, Cairns W, Seraglia R, TraldiP, Cescon P, Barbante C (2008) J Anal Atom Spectrom 23:402–406

    CAS  Google Scholar 

  62. Jitaru P, Cozzi G, Gambaro A, Cescon P, Barbante C (2008) Anal Bioanal Chem 391:661

    CAS  Google Scholar 

  63. Hinojosa Reyes L, Marchante-Gayon JM, Garcıa Alonso JI, Sanz-Medel A (2003) J Anal Atom Spectrom 18:1210–1216

    CAS  Google Scholar 

  64. Jitaru P, Cozzi G, Seraglia R, Traldi P, Cescon P, Barbante C (2010) Anal Methods 2:1382–1387

    CAS  Google Scholar 

  65. Shigeta K, Sato K, Furuta N (2007) J Anal Atom Spectrom 22:911–916

    CAS  Google Scholar 

  66. Jitaru P, Roman M, Cozzi G, Fisicaro P, Cescon P, Barbante C (2009) Microchim Acta 166:319–327

    CAS  Google Scholar 

  67. Szpunar J (2005) Analyst 130:442–465

    CAS  Google Scholar 

  68. Kannamkumarath SS, Wrobel K, Wuilloud RG (2005) Talanta 66:153–159

    CAS  Google Scholar 

  69. Szpunar J (2000) Analyst 125:963–988

    CAS  Google Scholar 

  70. Kyriakopoulos A, Hoppe B, Alber D, Graebert A, Kuhbacher M, Weseloh G, Behne D (2004) J Radioanal Nucl Chem 259:453–458

    CAS  Google Scholar 

  71. Bruzelius K, Purup S, James P, Önning G, Akesson B (2008) J Trace Elem Med Biol 22:224–233.

    CAS  Google Scholar 

  72. Fan TWM, Pruszkowski E, Shuttleworth S (2002) J Anal Atom Spectrom 17:1621–1623

    CAS  Google Scholar 

  73. Chéry CC, Günther D, Cornelis R, Vanhaecke F, Moens L (2003) Electrophoresis 24:3305–3313

    Google Scholar 

  74. Pedrero Z, Madrid Y, Camara C, Schram E, Luten JB, Feldman I, Waentig L, Heiko H, Jakubowski N (2009) J Anal At Spectrom 24:775–784

    CAS  Google Scholar 

  75. Pedrero Z, Murillo S, Cámara C, Schram E, Luten JB, Feldmann I, Jakubowski N, Madrid Y (2011) J Anal At Spectrom 26:116

    CAS  Google Scholar 

  76. Hergenröder R, Samek O, Hommes V (2006) Mass Spectrom Rev 25:551–572

    Google Scholar 

  77. Claverie F, Pécheyran C, Mounicou S, Ballihaut G, Fernandez B, Alexis J, Lobinski R, Donard OFX (2009) Spectrochim Acta Part B 64:649–658

    Google Scholar 

  78. Ballihaut G, Claverie F, Cheyran CP, Mounicou S, Grimaud R, Lobinski R (2007) Anal Chem 79:6874–6880

    CAS  Google Scholar 

  79. Chassaigne H, Chery CC, Bordin G, Vanhaecke F, Rodriguez AR (2004) J Anal Atom Spectrom 19:8517–8521

    Google Scholar 

  80. Ballihaut G, Tastet L, Pecheyran C, Bouyssiere B, Donard O, Grimaud R, Lobinski R (2005) J Anal At Spectrom 20:493–499

    CAS  Google Scholar 

  81. Tastet L, Schaumloffel D, Bouyssiere B, Lobinski R (2006) Anal Bioanal Chem 385:948–953

    CAS  Google Scholar 

  82. Tasted C, Schaumloeffel D, Lobisnski R (2008) J Anal Atom Spectrom 23(2008):309–317

    Google Scholar 

  83. Ruiz Encinar J, Ruzik R, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Analyst 128:220–224

    CAS  Google Scholar 

  84. Ruiz Encinar J, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Anal Chem 75:3765–3774

    CAS  Google Scholar 

  85. Ballihaut G, Pecheyran C, Mounicou S, Preud’Homme H, Grimaud R, Lobinski R (2007) Trends Anal Chem 26:184–190

    Google Scholar 

  86. Jacob C, Giles GI, Giles NM, Sies H (2003) Angew Chem Int Ed Engl 42:4742–4758

    CAS  Google Scholar 

  87. Ma S, Caprioli RM, Hill KE, Burk RF (2003) J Am Soc Mass Spectrom 14:593–600

    CAS  Google Scholar 

  88. Ip C, Zhu Z, Thompson HJ, Lisk D, Ganther HE (1999) Anticancer Res 19:2875–2880

    CAS  Google Scholar 

  89. Rooseboom M, Vermeulen NPE, Van Hemert N, Commandeur JNM (2001) Chem Res Toxicol 14:996–1005

    CAS  Google Scholar 

  90. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K (1981) Biochemistry 20:4492–4496

    CAS  Google Scholar 

  91. Mihara H, Kurihara T, Watanabe T, Yoshimura T, Esaki N (2000) J Biol Chem 275:6195–6200

    CAS  Google Scholar 

  92. Palacios O, Lobinski R (2007) Talanta 71:1813–1816

    CAS  Google Scholar 

  93. Dernovics M, Lobinski R (2008) J Anal Atom Spectrom 23:744–751

    CAS  Google Scholar 

  94. Bierla K, Dernovics M, Vacchina V, Spuznar J, Bertin G, Lobinski R (2008) Anal Bioanal Chem 390:1789–1798

    CAS  Google Scholar 

  95. Lipiec E, Siara G, Bierla K, Ouerdane L, Spuznar J (2010) Anal Bioanal Chem 397:731–741

    CAS  Google Scholar 

  96. Ballihaut G, Mounicou S, Lobinski R (2007) Anal Bioanal Chem 388:585–591

    CAS  Google Scholar 

  97. Wang M, Feng WY, Zhao YL, Chai ZF (2010) Mass Spectrom Rev 29:326–348

    Google Scholar 

  98. Bettmer J (2010) Anal Bioanal Chem 397:3495–3502

    CAS  Google Scholar 

  99. Jitaru P, Goenaga-Infante H, Vaslin-Reimann S, Fisicaro P (2010) Anal Chim Acta 657:100–107

    CAS  Google Scholar 

  100. Xu M, Yang LM, Wang QQ (2008) J Anal Atom Spectrom 23:1545–1549

    CAS  Google Scholar 

  101. Rogers DA, Ray SJ, Hieftje GM (2010) Metallomics 2:271–279

    CAS  Google Scholar 

  102. Rogers DA, Ray SJ, Hieftje GM (2010) Metallomics 2:280–288

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Spanish MICINN (Ministry for Science and Innovation and Regional Government of Madrid) through the projects CTQ-2008-05925 and CAM-S2009/AGR/1464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Madrid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heras, I.L., Palomo, M. & Madrid, Y. Selenoproteins: the key factor in selenium essentiality. State of the art analytical techniques for selenoprotein studies. Anal Bioanal Chem 400, 1717–1727 (2011). https://doi.org/10.1007/s00216-011-4916-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4916-4

Keywords

Navigation