[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Physiological and biochemical analysis of L. tredecimguttatus venom collected by electrical stimulation

Propiedades bioquímicas y fisiológicas del veneno del escorpión L. tredecimguttatus obenidor por estimulación eléctrica

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The L. tredecimguttatus venom was collected by electrical stimulation and systematically analyzed. Gel electrophoresis and RP-HPLC showed that the venom consisted primarily of proteins with molecular weights above 10 kDa, most of which were high-molecular-mass acidic proteins, with fewer proteins and peptides below 10 kDa. The most abundant proteins in the venom were concentrated at around 100 kDa, which included latrotoxins- the principal toxic components of the venom. Injection of the venom in mice and cockroaches P. americana gave rise to obvious poisoned symptoms, with LD50 values of 0.16 mg/kg and 1.87 μg/g, respectively. Electrophysiological experiments showed that the venom could block the neuromuscular transmission in isolated mouse phrenic nerve-hemidiaphragm and rat vas deferens preparations. The low-molecular-weight fraction (<10 kDa) of the venom had no effect on the transmission. Enzymatic analysis indicated that the venom possess activities of several kinds of hydrolases including hyaluronidase and proteases. These results demonstrated that L. tredecimguttatus venom was basically a large-protein-constituted venom and is one of the most poisonous spider venoms known in the world. The mammalian toxicity of the venom was based on its larger proteins rather than on smaller proteins and peptides, and its hydrolase activities might be involved in the latrodectism. The use of electrical stimulation method to collect the venom has the advantages of avoiding contamination and repeated use of the valuable L. tredecimguttatus venom resources.

Resumen

En el presenta trabajo, se analiza el veneno de Latrodectus tredecimguttatus obtenido por estimulación eléctrica, método de recolección que evita la contaminación. Tras aplicación de técnicas de HPLC, espectrometría de masas y electroforesis en gel se deduce que el veneno contiene predominantemente proteínas ácidas de peso molecular superior a 10kDa. Las mas abundantes se concentran alrededor de 100 kDa, entre las que se encuentra la latrocina, principal componente tóxico del veneno. El análisis enzimático del veneno indica que incluye actividad enzimática de varios tipos de hidrolasas, incluyendo hialuronidasa y proteasas. Tras inyección del veneno en el ratón y en la cucaracha Periplaneta americana se obtuvieron valores de LD50 de 0,16 mg/kg y 1,87 microg/g respectivamente. Los experimentos electrofisiológicos mostraron que el veneno bloqueaba la transmisión neuromuscular tanto en preparado nervio frénico-hemidiafragma de ratón como en el de vas deferens de rata. La fracción del veneno que contenía péptidos de bajo peso molecular (inferior a 10 kDa) era inefectiva sobre la transmisión. En suma, los resultados muestran que la gran toxicidad del veneno de Latrodectus tredecimguttatus se relaciona con su contenido en proteínas de elevado peso molecular, cuyas actividades hidrolíticas están incluidas en el lactrodectismo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbaro, K.C., Ferreira, M.L., Cardoso, D.F., Eickstedt, V.R. and Mota, I. (1996): J. Med. Biol. Res., 29, 1491–1497.

    CAS  Google Scholar 

  2. Bessey, O.A., Lowry, O.H. and Brock, M.J. (1946): J. Biol. Chem., 164, 321–329.

    CAS  Google Scholar 

  3. Bjellqvist, B., Sanchez, J.C., Pasquali, C., Ravier, F., Paquet, N., Frutiger, S., Hughes, G.J. and Hochstrasser, D. (1993): Electrophoresis, 14, 1375–1378.

    Article  CAS  PubMed  Google Scholar 

  4. Bradford, M. (1976): Analyt. Biochem., 772, 248–264

    Article  Google Scholar 

  5. Burmistrov, Y.M., Shuranova, Z.P. and Artiukhina, N.I. (1997): Gen. Pharmacol., 28, 159–166.

    CAS  PubMed  Google Scholar 

  6. Clark, A.W., Hurlbut, W.P. and Mauro, A. (1972): J. Cell Biol., 52, 1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Conceicăo, I.M., Jurkiewicz, A., Fonseca, D.R., Opperman, A.R., Freitas, T.A., Lebrum, I. and Garcez-do-Carmo, L. (2005): British J. Pharmacol., 144, 519–527.

    Article  Google Scholar 

  8. Feitosa, L., Gremski, W., Veiga, S.S., Elias, M.C.Q.B., Graner, E., Mangili, O.C. and Brentani, R.R. (1998): Toxicon., 36, 1039–1051.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrante, N.D. (1956): J. Biol. Chem., 220, 303–307.

    Google Scholar 

  10. Fesce, R., Segal, J.R., Ceccarelli, B. and Hurlbut, W.P. (1986): J. Gen. Physiol., 88, 59–81.

    Article  CAS  PubMed  Google Scholar 

  11. Foradori, M.J., Smith, S.C., Smith, E. and Wells, R.E. (2005): Comp. Biochem. Physiol. C, 141, 32–39.

    Google Scholar 

  12. Frontali, N., Ceccarelli, B., Gorio, A., Mauro, A., Siekevitz, P., Tzeng, M.C. and Hurlbut, W.P. (1976): J. Cell Biol., 68, 462–479.

    Article  CAS  PubMed  Google Scholar 

  13. Futrell, J.M. (1992): Am. J. Med. Sci., 304, 261–267.

    Article  CAS  PubMed  Google Scholar 

  14. Gorio, A. and Mauro, A. (1979): J. Gen. Physiol., 73, 245–263.

    Article  CAS  PubMed  Google Scholar 

  15. Grasso, A. (1976): Biochim. Biophys. Acta., 439, 406–412.

    CAS  PubMed  Google Scholar 

  16. Grishin, E.V. (1998): Toxicon., 36, 1693–1701.

    Article  CAS  PubMed  Google Scholar 

  17. Isbister, G.K. and White, J. (2004): Toxicon., 43, 477–492.

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, N., Mauro, A. and Grundfest, H. (1972): J. Gen. Physiol., 60, 650–664.

    Article  CAS  PubMed  Google Scholar 

  19. Kunitz, M. (1950): J. Gen. Physiol., 33, 349–362.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, U.K. (1970): Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  21. Lew, M.J., Flinn, J.P., Pallaghy, P.K., Murphy, R., Whorlow, S.L., Wright, C.E., Norton, R.S. and Angus, J.A. (1997): J. Biol. Chem., 272, 12 014–12 023.

    CAS  Google Scholar 

  22. Liang, S.P. (2004): Toxicon, 43, 575–585.

    Article  CAS  PubMed  Google Scholar 

  23. Liang, S.P., Qu, Y.X. and Zhang, D.Y. (1993): Zool. Res., 14, 60–65.

    Google Scholar 

  24. Misler, S. and Hurlbut, W. (1997): Proc. Natl. Acad. Sci. USA., 76, 991–995.

    Article  Google Scholar 

  25. Pilz, W. (1963): Methods in Methods of Enzymatic Analysis. 800–806 H. U. Bergmeyer (ed) Academic Press, New York.

    Google Scholar 

  26. Rash, L.D. and Hodgson, W.C. (2002): Toxicon., 40, 225–254.

    Article  CAS  PubMed  Google Scholar 

  27. Rich, W. (1963): Methods of Enzymatic Analysis. 765–770 H.U. Bergmeyer (ed) Academic Press, New York.

    Google Scholar 

  28. Schweitz, H. (1984): Toxicon., 22, 308–311.

    Article  CAS  PubMed  Google Scholar 

  29. Todorov, L.D., Mihaylova-todorova, S.T., Bjur, R.A., and Westfall, D.P. (1999): J. Pharmacol. Exp. Ther., 290, 241–246.

    CAS  PubMed  Google Scholar 

  30. Ushkaryov, Y.A., Volynski, K.E. and Ashton, A.C. (2004): Toxicon., 43, 527–542.

    Article  CAS  PubMed  Google Scholar 

  31. Veiga, S.S., Zanetti, V.C., Braz, A., Mangili, O.C. and Gremski, W. (2001): Braz. J. Med. Bio. Res., 34, 843–850.

    CAS  Google Scholar 

  32. Waterman, S.A. (1997): British J. Pharmacol., 120, 393–398.

    Article  CAS  Google Scholar 

  33. Zeng, X.Z., Xiao, Q.B. and Liang, S.P. (2003): Toxicon, 41, 651–656.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, P.A., Xie, X.J., Li, M., Yang, D.M., Xie, Z.P., Zong, X. and Liang, S.P. (1997): Toxicon, 35, 39–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.C., Duan, Z.G., Yang, J. et al. Physiological and biochemical analysis of L. tredecimguttatus venom collected by electrical stimulation. J. Physiol. Biochem. 63, 221–230 (2007). https://doi.org/10.1007/BF03165785

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165785

Key words

Palabras clave

Navigation