References
P. D. Bacsich,Injective hulls as completions, Glasgow Math. J. (to appear).
P. D. Bacsich,Injectivity in model theory, Colloq. Math. (to appear).
K. A. Baker,Equational axiom problems in algebras whose congruence lattices are distributive (to appear).
S. Balcerzyk and J. Mycielski,On faithful representations of free products of groups, Fundamenta Math.50 (1961), 63–71.
B. Banaschewski,Injectivity and essential extensions in equational classes of algebras, Proceedings of the Conference on Universal Algebra (October, 1969), Queen’s Papers in Pure and Applied Mathematics No. 25, Kingston, Ontario, 1970, 131–147.
B. Banaschewski,Equational compactness of G-sets, manuscript (1971).
B. Banaschewski and G. Bruns,Categorical characterization of the MacNeille completion, Arch. Math. (Basel)18 (1967), 369–377.
G. Birkhoff,On the structure of abstract algebras, Proc. Cambridge Phil. Soc.31 (1935), 433–454.
G. Birkhoff,Subdirect unions in universal algebra, Bull. Amer. Math. Soc.50 (1944), 764–768.
G. Birkhoff,Lattice theory, Amer. Math. Soc. Colloq. Publ. No. 25, 3rd Edition (Providence, 1967).
P. M. Cohn,Universal algebra (Harper and Row, New York, 1965).
A. Daigneault,Injective envelopes, Amer. Math. Monthly76 (1969), 766–774.
A. Day,Injectives in non-distributive equational classes of lattices are trivial, Arch. Math. (Basel) 21 (1970), 113–115.
A. Day,Injectivity in equational classes of algebras (to appear).
T. J. Dekker,On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde (5)7 (1959), 57–60.
P. Erdös,Some set-theoretical properties of graphs, Univ. Nac. Tucumán Rev. Ser. A 3 (1942), 363–367.
P. Erdös and R. Rado,A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.
L. Fuchs,Infinite Abelian Groups, Vol. I (Academic Press, N.Y. and London, 1970).
G. Grätzer,Universal Algebra (van Nostrand, Princeton, 1968).
G. Grätzer and H. Lakser,The structure of pseudocomplemented distributive lattices, II. Congruence extension and amalgamation, Trans. Amer. Math. Soc.156 (1971), 343–358.
G. Grätzer and H. Lakser,Some new relations on operators in general, and for pseudocomplemented distributive lattices in particular, Abstract 70T-A91, Notices Amer. Math. Soc.17 (1970), 642.
D. Higgs,Remarks on residually small varieties, Algebra Universalis1/3 (1971).
B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121.
B. Jónsson,The amalgamation property in varieties of modular lattices, Abstract 71T-A42, Notices Amer. Math. Soc.18 (1971), 400.
H. Lakser,The structure of pseudocomplemented distributive lattices, I. Subdirect decomposition, Trans. Amer. Math. Soc.156 (1971), 335–342.
K. B. Lee,Equational classes of distributive pseudocomplemented lattices, Canad. J. Math.22 (1970), 881–891.
J. Łoś,Abelian groups that are direct summands of every Abelian group which contains them as pure subgroups, Fundamenta Math.44 (1957), 84–90.
A. I. Mal’cev,On the general theory of algebraic systems (in Russian), Math. Sbornik (N.S.)35(77) (1954), 3–20.
R. McKenzie and S. Shelah,The cardinals of simple models for universal theories, Proceedings of the Tarski Symposium, Berkeley, California, 1971. To appear in Symposia in Pure Mathematics, Amer. Math. Soc., Providence.
J. Mycielski,Some compactifications of general algebras, Colloq. Math.13 (1964), 1–9.
J. Mycielski and C. Ryll-Nardzewski,Equationally compact algebras (II), Fund. Math.61 (1968), 271–281;errata, ibid. 62 (1968), 309.
P. Ribenboim,Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math.2 (1949), 43–49.
S. G. Simpson,Model-theoretic proof of a partition theorem, Abstract 70T-E69, Notices Amer. Math. Soc.17 (1970), 964.
A. Tarski,A remark on functionally free algebras, Ann. of Math. (2)47 (1946), 163–165.
W. Taylor,Atomic compactness and elementary equivalence, Fundamenta Math.71 (1971), 103–112.
W. Taylor,Some constructions of compact algebras, Annals of Math. Logic (to appear).
W. Taylor,Residually small varieties, Abstract 71T-A89, Notices Amer. Math. Soc.18 (1971), 621.
B. Weglorz,Equationally compact algebras (I), Fundamenta Math.59 (1966), 289–298.
B. Węglorz,Equationally compact algebras (III), Fundamenta Math.60 (1967), 89–93.
B. Węglorz,Remarks on compactifications of abstract algebras (abstract), Colloq. Math.14 (1966), 372.
B. Węglorz and A. Wojciechowska,Summability of pure extensions of relational structures, Colloq. Math.19 (1968), 27–35.
G. H. Wenzel,Subdirect irreducibility and equational compactness in unary algebras <A; f>, Arch. Math. (Basel)21 (1970), 256–264.
Author information
Authors and Affiliations
Additional information
Supported in part by NSF grant GP-19405.
Rights and permissions
About this article
Cite this article
Taylor, W. Residually small varieties. Algebra Univ. 2, 33–53 (1972). https://doi.org/10.1007/BF02945005
Issue Date:
DOI: https://doi.org/10.1007/BF02945005