[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Residually small varieties

  • Published:
algebra universalis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. P. D. Bacsich,Injective hulls as completions, Glasgow Math. J. (to appear).

  2. P. D. Bacsich,Injectivity in model theory, Colloq. Math. (to appear).

  3. K. A. Baker,Equational axiom problems in algebras whose congruence lattices are distributive (to appear).

  4. S. Balcerzyk and J. Mycielski,On faithful representations of free products of groups, Fundamenta Math.50 (1961), 63–71.

    MATH  MathSciNet  Google Scholar 

  5. B. Banaschewski,Injectivity and essential extensions in equational classes of algebras, Proceedings of the Conference on Universal Algebra (October, 1969), Queen’s Papers in Pure and Applied Mathematics No. 25, Kingston, Ontario, 1970, 131–147.

  6. B. Banaschewski,Equational compactness of G-sets, manuscript (1971).

  7. B. Banaschewski and G. Bruns,Categorical characterization of the MacNeille completion, Arch. Math. (Basel)18 (1967), 369–377.

    MATH  MathSciNet  Google Scholar 

  8. G. Birkhoff,On the structure of abstract algebras, Proc. Cambridge Phil. Soc.31 (1935), 433–454.

    Article  Google Scholar 

  9. G. Birkhoff,Subdirect unions in universal algebra, Bull. Amer. Math. Soc.50 (1944), 764–768.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Birkhoff,Lattice theory, Amer. Math. Soc. Colloq. Publ. No. 25, 3rd Edition (Providence, 1967).

  11. P. M. Cohn,Universal algebra (Harper and Row, New York, 1965).

    MATH  Google Scholar 

  12. A. Daigneault,Injective envelopes, Amer. Math. Monthly76 (1969), 766–774.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Day,Injectives in non-distributive equational classes of lattices are trivial, Arch. Math. (Basel) 21 (1970), 113–115.

    MATH  MathSciNet  Google Scholar 

  14. A. Day,Injectivity in equational classes of algebras (to appear).

  15. T. J. Dekker,On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde (5)7 (1959), 57–60.

    MATH  MathSciNet  Google Scholar 

  16. P. Erdös,Some set-theoretical properties of graphs, Univ. Nac. Tucumán Rev. Ser. A 3 (1942), 363–367.

    MATH  Google Scholar 

  17. P. Erdös and R. Rado,A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Fuchs,Infinite Abelian Groups, Vol. I (Academic Press, N.Y. and London, 1970).

    MATH  Google Scholar 

  19. G. Grätzer,Universal Algebra (van Nostrand, Princeton, 1968).

    MATH  Google Scholar 

  20. G. Grätzer and H. Lakser,The structure of pseudocomplemented distributive lattices, II. Congruence extension and amalgamation, Trans. Amer. Math. Soc.156 (1971), 343–358.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Grätzer and H. Lakser,Some new relations on operators in general, and for pseudocomplemented distributive lattices in particular, Abstract 70T-A91, Notices Amer. Math. Soc.17 (1970), 642.

    Google Scholar 

  22. D. Higgs,Remarks on residually small varieties, Algebra Universalis1/3 (1971).

  23. B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121.

    MATH  MathSciNet  Google Scholar 

  24. B. Jónsson,The amalgamation property in varieties of modular lattices, Abstract 71T-A42, Notices Amer. Math. Soc.18 (1971), 400.

    Google Scholar 

  25. H. Lakser,The structure of pseudocomplemented distributive lattices, I. Subdirect decomposition, Trans. Amer. Math. Soc.156 (1971), 335–342.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. B. Lee,Equational classes of distributive pseudocomplemented lattices, Canad. J. Math.22 (1970), 881–891.

    MATH  MathSciNet  Google Scholar 

  27. J. Łoś,Abelian groups that are direct summands of every Abelian group which contains them as pure subgroups, Fundamenta Math.44 (1957), 84–90.

    MATH  Google Scholar 

  28. A. I. Mal’cev,On the general theory of algebraic systems (in Russian), Math. Sbornik (N.S.)35(77) (1954), 3–20.

    MathSciNet  Google Scholar 

  29. R. McKenzie and S. Shelah,The cardinals of simple models for universal theories, Proceedings of the Tarski Symposium, Berkeley, California, 1971. To appear in Symposia in Pure Mathematics, Amer. Math. Soc., Providence.

  30. J. Mycielski,Some compactifications of general algebras, Colloq. Math.13 (1964), 1–9.

    MATH  MathSciNet  Google Scholar 

  31. J. Mycielski and C. Ryll-Nardzewski,Equationally compact algebras (II), Fund. Math.61 (1968), 271–281;errata, ibid. 62 (1968), 309.

    Google Scholar 

  32. P. Ribenboim,Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math.2 (1949), 43–49.

    MathSciNet  Google Scholar 

  33. S. G. Simpson,Model-theoretic proof of a partition theorem, Abstract 70T-E69, Notices Amer. Math. Soc.17 (1970), 964.

    Google Scholar 

  34. A. Tarski,A remark on functionally free algebras, Ann. of Math. (2)47 (1946), 163–165.

    Article  MathSciNet  Google Scholar 

  35. W. Taylor,Atomic compactness and elementary equivalence, Fundamenta Math.71 (1971), 103–112.

    MATH  Google Scholar 

  36. W. Taylor,Some constructions of compact algebras, Annals of Math. Logic (to appear).

  37. W. Taylor,Residually small varieties, Abstract 71T-A89, Notices Amer. Math. Soc.18 (1971), 621.

    Google Scholar 

  38. B. Weglorz,Equationally compact algebras (I), Fundamenta Math.59 (1966), 289–298.

    MATH  MathSciNet  Google Scholar 

  39. B. Węglorz,Equationally compact algebras (III), Fundamenta Math.60 (1967), 89–93.

    MATH  Google Scholar 

  40. B. Węglorz,Remarks on compactifications of abstract algebras (abstract), Colloq. Math.14 (1966), 372.

    Google Scholar 

  41. B. Węglorz and A. Wojciechowska,Summability of pure extensions of relational structures, Colloq. Math.19 (1968), 27–35.

    MATH  MathSciNet  Google Scholar 

  42. G. H. Wenzel,Subdirect irreducibility and equational compactness in unary algebras <A; f>, Arch. Math. (Basel)21 (1970), 256–264.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grant GP-19405.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, W. Residually small varieties. Algebra Univ. 2, 33–53 (1972). https://doi.org/10.1007/BF02945005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945005

Keywords

Navigation