[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterization of the Jorgensen set in generalized linear models

  • Published:
Test Aims and scope Submit manuscript

Summary

Shanbhag’s clever method for finding the Jorgensen set of the family of Wishart distributions on symmetric matrices is extended here to Wishart distributions on symmetric cones, such as Hermitian matrices on complex numbers or quaternions. The idea is also extended to various other multivariate distributions, including the natural exponential family associated with the set of normal distributions onR with unknown mean and variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Andersson, S. A. (1975). Invariant normal models.Ann. Statist. 3, 132–154.

    MathSciNet  MATH  Google Scholar 

  • Casalis, M. (1990).Familles Exponentielles Naturelles Invariantes par un Groupe. Ph. D. Thesis, Université Paul Sabatier.

  • Casalis, M., Letac, G. and Massam, H. (1993). A decomposition for the exponential dispersion model generated by the invariant measure on the hyperboloïd.J. Theor. Prob. 6, 803–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Chhikara, R. S. and Folks, L. (1989).The Inverse Gaussian Distribution. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Eaton, M. L. (1983).Multivariate Statistics: A Vector Space Approach. New York: Wiley.

    MATH  Google Scholar 

  • Faraut, J. (1988a).Algèbres de Jordan et Cônes Symétriques. Poitiers: CIMPA.

    Google Scholar 

  • Faraut, J. (1988b). Formule du binôme généralisée,Lecture Notes in Math.1359, 170–180.

    Article  MathSciNet  Google Scholar 

  • Faraut, J. and Koranyi, A. (1994).Jordan Algebras and Symmetric Cones. (to appear).

  • Gindikin, S. G. (1975). Invariant generalized functions in homogeneous spaces.J. of Funct. Anal. Appl. 9, 50–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, P., Von Neumann, J. and Wigner, E. (1934). On an algebraic generalization of the quantum mechanical formalism.Ann. Math. 36, 29–64.

    Article  Google Scholar 

  • Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution.Ann. Math. Statist.,34, 152–176.

    MathSciNet  MATH  Google Scholar 

  • Jorgensen, B. (1987). Exponential dispersion models.J. Roy. Statist. Soc. B 49, 2, 127–162.

    MathSciNet  Google Scholar 

  • Khatri, C. G. (1965). Classical statistical analysis based on a certain multivariate analysis based on a certain multivariate complex Gaussian distribution.Ann. Math. Statist. 36, 98–114.

    MathSciNet  MATH  Google Scholar 

  • Lassalle, M. (1987). Algèbre de Jordan et ensemble de Wallach.Invent. Math. 89, 375–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Letac, G. (1989). A characterization of the Wishart exponential families by an invariance property.J. Theor. Prob. 2, 71–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Letac, G. (1994). Les familles exponentielles statistiques invariantes par les groupes du cône et du paraboloïde de révolution.Volume in honor of L. Takacs (J. Galambos and J. Gani eds.). Sheffield: Applied Prob. Trust.

    Google Scholar 

  • Lévy, P. (1948). The arithmetical character of the Wishart distribution.Proc. Cambridge Philos. Soc.,44, 295–297.

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh, P. and Nelder, J. A. (1983).Generalized Linear Models, London: Chapman and Hall.

    MATH  Google Scholar 

  • Muirhead, R. J. (1982).Aspects of Multivariate Statistical Theory, New York: Wiley.

    MATH  Google Scholar 

  • Olkin, I. and Rubin, H. (1962). A characterization of the Wishart distribution.Ann. Math. Statist. 33, 4, 1272–1280.

    MathSciNet  MATH  Google Scholar 

  • Peddada, S. and Richards, D. (1991). Proof of a conjecture of M. L. Eaton on the characteristic function of a Wishart distribution.Ann. Statist. 9, 2, 868–874.

    MathSciNet  Google Scholar 

  • Rossi, H. and Vergne, M. (1976). Analytic continuation of the holomorphic discrete series of semi-simple Lie group.Acta. Math. 136, 1–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Seshadri, V. (1994).The Inverse Gaussian Distribution. Oxford University Press.

  • Shanbhag, D.N. (1988). The Davidson-Kendall problem and related results on the structure of the Wishart distribution.Austr. J. Statist. 30A, 272–280.

    Google Scholar 

  • Wallach, N. (1979). The analytic continuation of the discrete series I, II.Trans. Amer. Math. Soc.,251, 1–17; 19–37.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casalis, M., Letac, G. Characterization of the Jorgensen set in generalized linear models. Test 3, 145–162 (1994). https://doi.org/10.1007/BF02562678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562678

Keywords

Navigation