Abstract
An overlap in a word is a factor of the form axaxa, where x is a (possibly empty) word and a is a single letter; these have been well-studied since Thue’s landmark paper of 1906. In this note we consider three new variations on this well-known definition and some consequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)
Berstel, J.: Axel Thue’s papers on repetitions in words: a translation, No. 20. In: Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec à Montréal, February 1995
Blondel, V.D., Cassaigne, J., Jungers, R.M.: On the number of \(\alpha \)-power-free binary words for \(2 < \alpha \le 7/3\). Theoret. Comput. Sci. 410, 2823–2833 (2009)
Cassaigne, J.: Counting overlap-free binary words. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 216–225. Springer, Heidelberg (1993). doi:10.1007/3-540-56503-5_24
Dejean, F.: Sur un théorème de Thue. J. Combin. Theor. Ser. A 13, 90–99 (1972)
Goulden, I., Jackson, D.: An inversion theorem for cluster decompositions of sequences with distinguished subsequences. J. London Math. Soc. 20, 567–576 (1979)
Jungers, R.M., Protasov, V.Y., Blondel, V.D.: Overlap-free words and spectra of matrices. Theor. Comput. Sci. 410, 3670–3684 (2009)
Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2011)
Mousavi, H.: Automatic theorem proving in Walnut (2016). https://arxiv.org/abs/1603.06017
Noonan, J., Zeilberger, D.: DAVID_IAN Maple package (1999). http://www.math.rutgers.edu/~zeilberg/gj.html
Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: extensions, applications, and implementations. J. Differ. Equ. Appl. 5, 355–377 (1999)
Rampersad, N.: Overlap-free words and generalizations. Ph.D. thesis, University of Waterloo (2008)
Sollami, M., Douglas, C.C., Liebmann, M.: An improved lower bound on the number of ternary squarefree words. J. Integer Sequences 19, 3 (2016). Article 16.6.7
Tan, B., Wen, Z.Y.: Invertible substitutions and Sturmian sequences. Eur. J. Comb. 24, 983–1002 (2003)
Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7, 1–22 (1906). Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 139–158
Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912). Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rajasekaran, A., Rampersad, N., Shallit, J. (2017). Overpals, Underlaps, and Underpals. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds) Combinatorics on Words. WORDS 2017. Lecture Notes in Computer Science(), vol 10432. Springer, Cham. https://doi.org/10.1007/978-3-319-66396-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-66396-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66395-1
Online ISBN: 978-3-319-66396-8
eBook Packages: Computer ScienceComputer Science (R0)