[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Experience-Dependent Response Plasticity in the Auditory Cortex: Issues, Characteristics, Mechanisms, and Functions

  • Chapter
Plasticity of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 23))

Abstract

The goal of this chapter is to provide a guide for understanding experience-dependent neuronal plasticity in the auditory cortex and its relation to behavior. (Unless otherwise noted, “auditory cortex” refers to the tonotopic primary auditory field, AI). It focuses on research that began in the mid-1980s concerning the question of how learning may alter the processing and representation of acoustic information in the primary auditory cortex. As used here, the term “plasticity” refers to systematic long-term (minutes to months) changes in the responses of neurons to sound as a result of experience. Plasticity at the level of altered neural responses is the result of various subcellular and molecular processes. Selected aspects of these substrates are included, particularly those relating to the cholinergic modulation of auditory cortical plasticity. Owing to lack of space, the subcortical auditory system cannot be reviewed, except as it directly pertains to mechanisms of cortical plasticity (see Birt et al. 1979; Cruickshank et al. 1992; Edeline and Weinberger 1992; Gonzalez-Lima and Scheich 1992; Hennevin et al. 1993; McKernan and Shinnick-Gallagher 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahissar E, Vaadia E, Ahissar M, Bergman H, et al. (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257: 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  • Ahissar E, Haidarliu S, Shulz DE (1996) Possible involvement of neuromodulatory systems in cortical Hebbian-like plasticity. J Physiol 90: 353–360.

    CAS  Google Scholar 

  • Ahissar E, Abeles M, Ahissar M, Haidarliu S, et al. (1998) Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology 37: 633–655.

    Article  CAS  PubMed  Google Scholar 

  • Armony JL, Quirk GJ, LeDoux JE (1998) Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. J Neurosci 18: 2592–2601.

    CAS  PubMed  Google Scholar 

  • Ashe JH, McKenna TM, Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: H. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Syn 4: 45–54.

    Google Scholar 

  • Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536: 271–286.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS, Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci USA 93: 1121911224.

    Google Scholar 

  • Bakin JS, Lepan B, Weinberger NM (1992) Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Res 577: 226–235.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS, South DA, Weinberger NM (1996) Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav Neurosci 110: 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chan VT, Merzenich MM (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412: 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Baust W, Berlucchi G, Moruzzi G (1964) Changes in the auditory input during arousal in cats with tenotomized middle ear muscles. Arch Ital Biol 102: 675–685.

    CAS  PubMed  Google Scholar 

  • Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8: 727–749.

    Article  CAS  PubMed  Google Scholar 

  • Birt D, Nienhuis R, Olds ME (1979) Separation of associative from non-associative short latency changes in medial geniculate and inferior colliculus during differential conditioning and reversal in rats. Brain Res 167: 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Bjordahl TS, Dimyan MA, Weinberger NM (1998) Induction of long term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basais. Behav Neurosci 112: 467–479.

    Article  CAS  PubMed  Google Scholar 

  • Blozovski D, Hennocq N (1982) Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampo-entorhinal area upon passive avoidance learning in young rats. Psychopharmacology 76: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Butt AE, Testylier G, Dykes RW (1997) Acetylcholine release in rat frontal and somatosensory cortex is enhanced during tactile discrimination learning. Psychobiol 25: 18–33.

    CAS  Google Scholar 

  • Cahill L, Vazdarjanova A, Setlow B (2000) The basolateral amygdala complex is involved with, but is not necessary for, rapid acquisition of Pavlovian “fear conditioning.” Eur J Neurosci 12: 304111 3050.

    Google Scholar 

  • Cahill L, McGaugh JL, Weinberger NM (2001) The neurobiology of learning and memory: some reminders to remember. Trends Neurosci 24: 578–581.

    Article  CAS  PubMed  Google Scholar 

  • Cansino S, Williamson SJ (1997) Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res. 764: 53–66.

    Article  CAS  PubMed  Google Scholar 

  • Casamenti F, Deffenu G, Abbamondi A, Pepeu G (1986) Changes in cortical acetylcholine output induced by modulation of the nucleus basais.

    Google Scholar 

  • Brain Res Bull 16:689–695. Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16:1053–1063.

    Google Scholar 

  • Chernychev BV, Weinberger NM (1998) Acoustic frequency tuning of neurons in the basal forebrain of the waking guinea pig. Brain Res 793: 79–94.

    Article  Google Scholar 

  • Cohen YE, Knudsen EI (1999) Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci 22: 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105: 416–430.

    Article  CAS  PubMed  Google Scholar 

  • Cranefield PF (1974) The Way In and The Way Out. Francois Magendie, Charles Bell and the Roots of the Spinal Nerves with a Facsimile of Charles Bell’s Annotated Copy of His Idea of a New Anatomy of the Brain. Mount Kisco, NY: Futura.

    Google Scholar 

  • Cruikshank SJ, Weinberger, NM (1996) Receptive field plasticity in adult auditory cortex induced by Hebbian covariance. J Neurosci 16: 861–875.

    CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Weinberger, NM (2001) In vivo hebbian and basal forebrain stimulation treatment responses in morphologically identified auditory cortical cells. Brain Res 891: 78–93.

    Article  CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Edeline JM, Weinberger NM (1992) Stimulation at a site of auditorysomatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci 106: 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174: 788–794.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of cat during acquisition of the pupillary conditioned response. II. Secondary field (AII) Behav Neurosci 98: 189–210.

    Google Scholar 

  • Diamond DM, Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res 372: 357–360.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Weinberger NM (1989) The role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav Neurosci 103: 471–494.

    Article  CAS  PubMed  Google Scholar 

  • Dimyan MA, Weinberger NM (1999) Basal forebrain stimulation induces discriminative receptive field plasticity in auditory cortex. Behav Neurosci 113: 691–702.

    Article  CAS  PubMed  Google Scholar 

  • Dinse HR, Recanzone GH, Merzenich MM (1993) Alterations in correlated activity parallel ICMS-induced representational plasticity. NeuroReport 5: 173–176.

    CAS  Google Scholar 

  • Duque A, Balatoni B, Detari L, Zaborszky L (2000) EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84: 16271635.

    Google Scholar 

  • Dykes RW (1997) Mechanisms controlling neuronal plasticity in somatosensory cortex. Can J Physiol Pharm 75: 535–545.

    Article  CAS  Google Scholar 

  • Edeline J-M (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57: 165–224.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Weinberger NM (1991) Thalamic short term plasticity in the auditory system: associative retuning of receptive fields in the ventral medial geniculate body. Behav Neurosci 105: 618–639.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106: 81–105.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav Neurosci 107: 82–103.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Neuenschwander-El Massioui N, Dutrieux G (1990a) Frequency-specific cellular changes in the auditory system during acquisition and reversal of discriminative conditioning. Psychobio 18: 382–393.

    Google Scholar 

  • Edeline J-M, Neuenschwander-El Massioui N, Dutrieux G (1990b) Discriminative longterm retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behav Brain Res 39: 145–155.

    Google Scholar 

  • Edeline J-M, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107: 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Hars B, Maho C, Hennevin E (1994a) Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulation in the rat auditory cortex. Exp Brain Res 96: 373–386.

    Google Scholar 

  • Edeline J-M, Maho C, Hars B, Hennevin E (1994b) Nonawaking basal forebrain stimulation enhances auditory cortex responsiveness during slow-wave sleep. Brain Res 636: 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48: 649–684.

    Article  CAS  PubMed  Google Scholar 

  • Fisher A, Brandeis R, Chapman S, Pittel Z, et al. (1998) M1 muscarinic agonist treatment reverses cognitive and cholinergic impairments of apolipoprotein E-deficient mice. J Neurochem 70: 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Landry DW, Jarvik ME (1981) Cholinergic receptor interactions and their effects on long-term memory processing. Brain Res 215: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel M, Saltwick SE, Miller JD (1975) Conditioning and reversal of short-latency multiple-unit responses in the rabbit medial geniculate nucleus. Science 189: 1108–1109.

    Article  CAS  PubMed  Google Scholar 

  • Galambos R, Sheatz G, Vernier VG (1955) Electrophysiological correlates of a conditioned response in cats. Science 123: 376–377.

    Article  Google Scholar 

  • Galvân VV, Weinberger NM (2002) Long-term consolidation and retention of learning: induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem 77: 78–108.

    Article  PubMed  Google Scholar 

  • Galvân VV, Chen J, Weinberger NM (2001) Long term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. JARO 2: 199–215.

    PubMed  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus: role of the corticofugal system. Proc Natl Acad Sci USA 97: 80818086.

    Google Scholar 

  • Gerren R, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265: 138–142.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Ito M, Kapadia M, Westheimer G (2000) Interactions between attention, context, and learning in primary visual cortex. Vision Res 40: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  • Gluck H, Rowland V (1959) Defensive conditioning of electrographic arousal with delayed and differentiated auditory stimuli. Electroencephalogr Clin Neurophysiol 11: 485–491.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F (1992) Brain imaging of auditory learning functions in rats: studies in fluorodeoxyglucose autoradiograph and cytochrome oxidase histochemistry. In: Gonzalez-Lima F, Finenstadt Th, Scheich H (eds), Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions. NATO ASI Series D, vol. 68. Boston/London: Kluwer Academic, pp. 39–109.

    Chapter  Google Scholar 

  • Gonzalez-Lima F, Scheich H (1984a) Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose: I. Activation of auditory nuclei. Behav Brain Res 14: 213–233.

    Google Scholar 

  • Gonzalez-Lima F, Scheich H (1984b) Classical conditioning enhances auditory 2deoxyglucose patterns in the inferior colliculus. Neurosci Lett 51: 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Scheich H (1986) Neural substrates for tone-conditioned bradycardia demonstration with 2-deoxyglucose: II. Auditory cortex plasticity. Behav Brain Res 20: 281–293.

    Google Scholar 

  • Gower M (1987) Enhancement by secoverine and physostigmine of retention of passive avoidance response in mice. Psychopharmacology 91: 326–329.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez H, Gutierrez R, Silva-Gandarias R, Estrada J, et al. (1999) Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation. Brain Res 834: 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Hall RD, Mark G (1967) Fear and the modification of acoustically evoked potentials during conditioning. J Neurophysiol 30: 893–910.

    CAS  PubMed  Google Scholar 

  • Hars B, Maho C, Edeline J-M, Hennevin E (1993) Basal forebrain stimulation facilitates tone-evoked response in the auditory cortex of awake rat. Neuroscience 56: 61–74.

    Article  CAS  PubMed  Google Scholar 

  • Hennevin E, Maho C, Hars B, Dutrieux, G (1993) Learning-induced plasticity in the medial geniculate nucleus is expressed during paradoxical sleep. Behav Neurosci 107: 1018–1030.

    Article  CAS  PubMed  Google Scholar 

  • Introini-Collison IB, McGaugh JL (1988) Modulation of memory by post-training epinephrine: Involvement of cholinergic mechanisms. Psychopharmacology 94: 379–385.

    Google Scholar 

  • Irvine DR, Rajan R (1996) Injury and use-related plasticity in the primary sensory cortex of adult mammals: possible relationship to perceptual learning. Clin Exp Pharm Physiol 23: 939–947.

    Article  CAS  Google Scholar 

  • Irvine DR, Webster WR (1972) Arousal effects on cochlear potentials: investigation of a two-factor hypothesis. Brain Res 39: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Irvine DR, Martin RL, Klimkeitt E, Smith R (2000) Specificity of perceptual learning in a frequency discrimination task. J Acoust Soc Am 108: 2964–2968.

    Article  CAS  PubMed  Google Scholar 

  • Iwata J, LeDoux JE, Meeley MP, Arneric S, et al. (1986) Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res 383: 195–214.

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Gao E, Suga N (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86: 211–225.

    CAS  PubMed  Google Scholar 

  • Jimenez-Capdeville ME, Dykes RW (1996) Changes in cortical acetylcholine release in the rat during day and night: differences between motor and sensory areas. Neuroscience 71: 567–579.

    Article  CAS  PubMed  Google Scholar 

  • Johnston MV, McKinney M, Coyle JT (1979) Evidence for a cholinergic projection to neocortex from neurons in the basal forebrain. Proc Nat Acad Sci USA 76: 53925396.

    Google Scholar 

  • Juckel G, Hegerl U, Molnar M, Csepe V, et al. (1999) Auditory evoked potentials reflect serotonergic neuronal activity—a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology 21: 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Kami A, Bertin G (1997) Learning perceptual skills: behavioral probes into adult cortical plasticity. Curr Opin Neurobiol 7: 530–535.

    Article  Google Scholar 

  • Kilgard MP, Merzench MM (1998) Cortical map reorganization enabled by nucleus basais activity. Science 279: 1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP, Pandya PK, Vazquez J, Gehi A, et al. (2001) Sensory input directs spatial and temporal plasticity in primary auditory cortex. J Neurophysiol 86: 326–338.

    CAS  PubMed  Google Scholar 

  • Kisley MA, Gerstein GL (1999) Long term variation of frequency response curves recorded from neuronal populations of auditory cortex: random variability or plasticity? Soc Neurosci Abstr 25: 392.

    Google Scholar 

  • Kisley MA, Gerstein GL (2001) Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. Eur J Neurosci 13: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM, Farley GR, Starr A (1978) Modulation of auditory cortex unit activity during the performance of a conditioned response. Exp Neurol 62: 678–697.

    Article  CAS  PubMed  Google Scholar 

  • Kraus N, McGee TJ, Koch DB (1998) Speech sound representation, perception, and plasticity: a neurophysiologic perspective. Audiol Neuro-Otol 3: 168–182.

    Article  CAS  Google Scholar 

  • Kurosawa M, Sato A, Sato Y (1989) Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci Lett 98: 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Nagy JI, Atmadia S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5: 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Lennartz RC, Weinberger NM (1992a) Frequency-specific receptive field plasticity in the medial geniculate body induced by Pavlovian fear conditioning is expressed in the anesthetized brain. Behav Neurosci 106: 484–497.

    Article  CAS  PubMed  Google Scholar 

  • Lennartz RC, Weinberger NM (1992b) Analysis of response systems in Pavlovian conditioning reveal rapidly vs. slowly acquired conditioned responses: support for two-factors and implications for neurobiology. Psychobiol 20: 93–119.

    Google Scholar 

  • LoConte G, Bartolini L, Casamenti F, Marconcini-Pepeu I et al. (1982) Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharm Biochem Behav 17: 933–937.

    Article  Google Scholar 

  • Lund RD, Webster KE (1967) Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J Comp Neurol 130: 313–328.

    Google Scholar 

  • Mackintosh NJ (1974) The Psychology of Animal Learning. London: Academic Press. Maho C, Hennevin E (2002) Appetitive conditioning-induced plasticity is expressed during paradoxical sleep in the medial geniculate but not in the lateral amygdala. Behav Neurosci 116: 807–823.

    Google Scholar 

  • Maho C, Hars B, Edeline J-M, Hennevin E (1995) Conditioned changes in the basal forebrain: relations with learning-induced cortical plasticity. Psychobiol 23: 10–25.

    Google Scholar 

  • Maldonado PE, Gerstein GL (1996) Neuronal assembly dynamics in the rat auditory cortex during reorganization induced by intracortical microstimulation. Exp Brain Res. 112: 431–441.

    Article  CAS  PubMed  Google Scholar 

  • Manunta Y, Edeline J-M (1997) Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur J Neurosci 9: 833–847.

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Yap SA, Goosens KA (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21: 1–6.

    Google Scholar 

  • McEchron MD, McCabe PM, Green EJ, Llabre MM, et al. (1995) Simultaneous single unit recording in the medial nucleus of the medial geniculate nucleus and amygdaloid central nucleus throughout habituation, acquisition, and extinction of the rabbit’s classically conditioned heart rate. Brain Res 682: 157–166.

    Article  CAS  PubMed  Google Scholar 

  • McEchron MD, Green EJ, Winters RW, Nolen TG, et al. (1996) Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. J Neurosci 16: 1273–1283.

    CAS  PubMed  Google Scholar 

  • McKenna TM, Ashe JH, Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4: 30–44.

    Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607–611.

    Article  CAS  PubMed  Google Scholar 

  • McLin DE III, Miasnikov AA, Weinberger NM (2002a) Induction of behavioral associative memory by stimulation of the nucleus basalis. Proc Natl Acad Sci USA 99: 4002–4007.

    Article  CAS  PubMed  Google Scholar 

  • McLin DE III, Miasnikov AA, Weinberger NM (2002b) The effects of electrical stimulation of the nucleus basalis on the electroencephalogram, heart rate and respiration. Behav Neurosci 116: 795–806.

    Article  PubMed  Google Scholar 

  • McLin DE III, Miasnikov AA, Weinberger NM (2003) CS-specific gamma, theta, and alpha EEG activity detected in stimulus generalization following induction of behavioral memory by stimulation of the nucleus basalis. Neurobiol Learn Mem 79: 152176.

    Google Scholar 

  • Merzenich MM, Sameshima K (1993) Cortical plasticity and memory. Curr Opin Neurobiol 3: 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature. Neuroscience 114: 6476.

    Google Scholar 

  • Metherate R, Ashe JH (1991) Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res 559: 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R, Ashe JH (1993) Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14: 132–143.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R, Weinberger NM (1990) Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse 6: 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R, Tremblay N, Dykes RW (1988) Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons. J Neurophysiol 59: 1231–1252.

    CAS  PubMed  Google Scholar 

  • Miasnikov A, McLin D HI, Weinberger NM (2001) Muscarinic dependence of nucleus basais induced conditioned receptive field plasticity. NeuroReport 12: 1537–1542.

    CAS  Google Scholar 

  • Miranda MI, Bermudez-Rattoni F (1999) Reversible inactivation of the nucleus basais magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci USA 96: 6478–6482.

    Article  CAS  PubMed  Google Scholar 

  • Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, et al. (1994) A functional anatomical study of associative learning in humans. Proc Natl Acad Sci USA 91: 8122–8126.

    Article  CAS  PubMed  Google Scholar 

  • Molnar M, Karmos G, Csepe V, Winkler I (1988) Intracortical auditory evoked potentials during classical aversive conditioning in cats. Biol Psychol 26: 339–350.

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Schnupp JWH, King AJ (2001) Coding the temporal structure of sounds in auditory cortex. Nature Neurosci 4: 1055–1056.

    Article  CAS  PubMed  Google Scholar 

  • Moriizumi T, Hattori T (1992) Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience 46: 701–710.

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Friston KJ, Dolan RJ (1998) Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc R Soc Lond 265: 649–657.

    Article  CAS  Google Scholar 

  • Murata K, Kameda K (1963) The activity of single cortical neurones of unrestrained cats during sleep and wakefulness. Arch Ital Biol 101: 306–331.

    CAS  PubMed  Google Scholar 

  • Oatman LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32: 341–356.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor KN, Allison TL, Rosenfield ME, Moore JW (1997) Neural activity in the medial geniculate nucleus during auditory trace conditioning. Exp Brain Res 113: 534–556.

    Article  PubMed  Google Scholar 

  • Oh JD, Edwards RH, Woolf NJ (1996) Choline acetyltransferase mRNA plasticity with Pavlovian conditioning. Exp Neurol 140: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H (1996) Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. Eur J Neurosci 8: 1001–1017.

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H (1997) Learning induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J Comp Physiol 181: 685–696.

    Article  CAS  Google Scholar 

  • Olds J, Peretz B (1960) A motivational analysis of the reticular activating system. Electroencephalogr Clin Neurophysiol 12: 445–454.

    Article  CAS  PubMed  Google Scholar 

  • Orsetti M, Casamenti F, Pepeu G (1996) Enhanced acetylcholine release in the hippo-campus and cortex during acquisition of an operant behavior. Brain Res 724: 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Palmer CV, Nelson CT, Lindley George A IV, (1998) The functionally and physiologically plastic adult auditory system. J Acous Soc Amer 103: 1705–1721.

    Article  CAS  Google Scholar 

  • Pennartz CM (1995) The ascending neuromodulatory systems in learning by reinforcement: comparing computational conjectures with experimental findings. Brain Res Rev 21: 219–245.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A, Gabriel M (2001) Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. J Neurosci 21: 270–278.

    CAS  PubMed  Google Scholar 

  • Potter DD, Pickles CD, Roberts RC, Rugg MD (2000) Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude. Biol Psych 52: 37–52.

    Article  CAS  Google Scholar 

  • Quirk GJ, Armony JL, LeDoux JE (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19: 613–624.

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115: 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DD, Clow K, Szerb JC (1992) Frequency-dependent increase in cortical acetylcholine release evoked by stimulation of the nucleus basalis magnocellularis in the rat. Brain Res 594: 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker, JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22: 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103.

    CAS  PubMed  Google Scholar 

  • Rescorla RA (1988) Behavioral studies of Pavlovian conditioning. Annu Rev Neurosci 11: 329–352.

    Article  CAS  PubMed  Google Scholar 

  • Richardson RT, DeLong MR (1986) Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res 399: 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Riekkinen P Jr, Riekkinen M, Sirvio J, Miettinen R, et al. (1992) Loss of cholinergic neurons in the nucleus basalis induces neocortical electroencephalographic and passive avoidance deficits. Neuroscience 47: 823–831.

    Article  PubMed  Google Scholar 

  • Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471.

    Article  CAS  PubMed  Google Scholar 

  • Rudy JW (1996) Scopolamine administered before and after training impairs both contextual and auditory-cue fear conditioning. Neurobiol Learn Mem 65: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Russell RW, Escobar ML, Booth RA, Bermudez-Rattoni F (1994) Accelerating behavioral recovery after cortical lesions: II. In vivo evidence for cholinergic involvement. Behav Neural Biol 61: 81–92.

    Google Scholar 

  • Rutkowski R, Than KH, Weinberger, NM (2002) Evidence for area of frequency representation encoding acquired stimulus importance in rat primary auditory cortex. Soc Neurosci Abstr 28: 530.

    Google Scholar 

  • Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behav Biol 22: 275–301.

    Article  CAS  PubMed  Google Scholar 

  • Salinas JA, Introini-Collison IB, Dalmaz C, McGaugh JL (1997) Postraining intraamygdala infusion of oxotremorine and propranolol modulate storage of memory for reductions in reward magnitude. Neurobiol Learn Mem 68: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (1984) Organization of cerebral cortical afferent systems in the rat: II. Magnocellular basal nucleus. J Comp Neurol 222: 313–342.

    Article  CAS  PubMed  Google Scholar 

  • Scheich H (1991) Auditory cortex: comparative aspects of maps and plasticity. Curr Opin Neurobiol 1: 236–247.

    Article  CAS  PubMed  Google Scholar 

  • Scheich H, Stark H, Zuschratter W, Ohl FW, et al. (1997) Some functions of primary auditory cortex in learning and memory. Adv Neurol 73: 179–193.

    CAS  PubMed  Google Scholar 

  • Schreurs BG, McIntosh AR, Bahro M, Herscovitch P, et al. (1997) Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J Neurophysiol 77: 2153–2163.

    CAS  PubMed  Google Scholar 

  • Shulz DE, Cohen S, Haidarliu S, Ahissar E (1997) Differential effects of acetylcholine on neuronal activity and interactions in the auditory cortex of the guinea-pig. Eur J Neurosci 9: 396–409.

    Article  CAS  PubMed  Google Scholar 

  • Sillito AM, Kemp JA (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res 289: 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68: 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Stratton L, Petinovich L (1963) Post-trial injections of an anti-cholinesterase drug and maze learning in two strains of rats. Psychopharmacology 5: 47–54.

    Article  CAS  Google Scholar 

  • Talwar SK, Gerstein GL (2001) Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. J Neurophysiol 86: 1555–1572.

    CAS  PubMed  Google Scholar 

  • Talwar SK, Musial PG, Gerstein GL (2001) Role of mammalian auditory cortex in the perception of elementary sound properties. J Neurophysiol 85: 2350–2358.

    CAS  PubMed  Google Scholar 

  • Teas DC, Kiang NY (1964) Evoked responses from the auditory cortex. Exp Neurol 10: 91–119.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF, Tracy, JA (1995) Cerebellar localization of a memory trace. In: McGaugh JL, Bermudez-Rationi F, et al. (eds), Plasticity in the Central Nervous System: Learning. Hillsdale, NJ: Lawrence Erlbaum, pp. 107–127.

    Google Scholar 

  • Travis RP, Sparks DL (1968) Unitary responses and discrimination learning in the squirrel monkey: the globus pallidus. Physiol Behav 3: 187–196.

    Article  Google Scholar 

  • Tremblay K, Kraus N, McGee T (1998) The time course of auditory perceptual learning: Neurophysiological changes during speech-sound training. NeuroReport 9:3557–3560. Tunturi AR (1944)

    Google Scholar 

  • Audio frequency localization in the acoustic cortex of the dog. Am J Physiol 141:397–403.

    Google Scholar 

  • Vanderwolf CH, Cain DP (1994) The behavioral neurobiology of learning and memory: a conceptual reorientation. Brain Res Rev 19: 264–297.

    Article  CAS  PubMed  Google Scholar 

  • Vazdarjanova A (2000) Does the basolateral amygdala store memories for emotional events? Trends Neurosci 23: 345.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18: 129–158.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (1998) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70: 226–251.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2001) Memory codes: a new concept for an old problem. In: Gold P, Greenough W (eds), Memory Consolidation: Essays in Honor of James L. McGaugh. Washington DC: American Psychological Association, pp. 321–342.

    Chapter  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nature Rev Neurosci 4: 279–290.

    Article  CAS  Google Scholar 

  • Weinberger NM, Diamond DM (1987) Physiological plasticity of single neurons in auditory cortex: rapid induction by learning. Prog Neurobiol 29: 1–55.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Oleson TD, Ashe JH (1975) Sensory system neural activity during habituation of the pupillary orienting reflex. Behav Biol 15: 283–301.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Gold PE, Sternberg DB (1984a) Epinephrine enables Pavlovian fear conditioning under anesthesia. Science 223: 605–607.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Hopkins W, Diamond DM (1984b) Physiological plasticity of single neurons in auditory cortex of cat during acquisition of the pupillary conditioned response: I Primary field ( AI ). Behav Neurosci 98: 171–188.

    Google Scholar 

  • Weinberger NM, Ashe JH, Metherate R, McKenna TM, et al. (1990a) Retuning auditory cortex by learning: a preliminary model of receptive field plasticity. Concept Neurosci 1: 91–132.

    Google Scholar 

  • Weinberger NM, Ashe JH, Metherate R, McKenna TM, et al. (1990b) Neural adaptive information processing: A preliminary model of receptive field plasticity in auditory cortex during Pavlovian conditioning. In: Gabriel M, Moore J. (eds), Neurocomputation and Learning: Foundations of Adaptive Networks. Cambridge, MA: Bradford Books/The MIT Press, pp. 91–138.

    Google Scholar 

  • Weinberger NM, Javid R, Lepan B (1993) Long-term retention of learning-induced receptive field plasticity in the auditory cortex. Proc Natl Acad Sci USA 90: 2394–2398.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long term facilitation of sensory evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body. Behav Neurosci 109: 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL (1997) The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem 67: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15: 299–318.

    Article  CAS  PubMed  Google Scholar 

  • Westenberg IS, Weinberger NM (1976) Evoked potential decrements in auditory cortex. II. Critical test for habituation. Electroencephalogr Clin Neurophysiol 40: 356–369.

    Google Scholar 

  • Wester K (1971) Habituation to electrical stimulation of the thalamus in unanaesthetized cats. Electroencephalogr Clin Neurophysiol 30:52–61.

    Google Scholar 

  • Whalen PJ, Kapp BS, Pascoe, JP (1994) Neuronal activity within the nucleus basalis and conditioned neocortical electroencephalographic activation. J Neurosci 14: 1623–1633.

    CAS  PubMed  Google Scholar 

  • Wickelgren WO (1968a) Effect of state of arousal on click-evoked responses in cats. J Neurophysiol 31: 757–768.

    CAS  PubMed  Google Scholar 

  • Wickelgren WO (1968b) Effect of acoustic habituation on click-evoked responses in cats. J Neurophysiol 31: 777–784.

    CAS  PubMed  Google Scholar 

  • Wilson FAW, Rolls ET (1990) Learning and memory is reflected in the responses of reinforcement related in the primate basal forebrain. J Neurosci 10: 1254–1267.

    CAS  PubMed  Google Scholar 

  • Woolsey CN, Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Johns Hop Hosp Bull 71: 315–344.

    Google Scholar 

  • Young, RM (1970) Mind, Brain and Adaptation in the Nineteenth Century. Oxford: Clarendon Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinberger, N.M. (2004). Experience-Dependent Response Plasticity in the Auditory Cortex: Issues, Characteristics, Mechanisms, and Functions. In: Parks, T.N., Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Plasticity of the Auditory System. Springer Handbook of Auditory Research, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4219-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4219-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1932-8

  • Online ISBN: 978-1-4757-4219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics