[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3944))

Included in the following conference series:

Abstract

We describe our submission to the PASCAL Recognizing Textual Entailment Challenge, which attempts to isolate the set of Text-Hypothesis pairs whose categorization can be accurately predicted based solely on syntactic cues. Two human annotators examined each pair, showing that a surprisingly large proportion of the data – 34% of the test items – can be handled with syntax alone, while adding information from a general-purpose thesaurus increases this to 48%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collins, M., Duffy, N.: New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In: Proceedings of ACL 2002, Philadelphia, PA (2002)

    Google Scholar 

  2. Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: The Proceedings of the PASCAL Recognising Textual Entailment Challenge (April 2005 )

    Google Scholar 

  3. Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. Computational Linguistics 28(3), 245–288 (2002)

    Article  Google Scholar 

  4. Hacioglu, K., Pradhan, S., Ward, W., Martin, J.H., Jurafsky, D.: Semantic Role Labeling by Tagging Syntactic Chunks. In: Proceedings of the Eighth Conference on Natural Language Learning (CONLL 2004), Boston,MA, May 6-7 (2004)

    Google Scholar 

  5. Henderson, J.: Discriminative training of a neural network statistical parser. In: Proceedings of ACL 2004, Barcelona, Spain (2004)

    Google Scholar 

  6. Ringger, E., Moore, R.C., Charniak, E., Vanderwende, L., Suzuki, H.: Using the Penn Treebank to Evaluate Non-Treebank Parsers. In: Proceedings of the 2004 Language Resources and Evaluation Conference (LREC), Lisbon, Portugal (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanderwende, L., Dolan, W.B. (2006). What Syntax Can Contribute in the Entailment Task. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_11

Download citation

  • DOI: https://doi.org/10.1007/11736790_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33427-9

  • Online ISBN: 978-3-540-33428-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics