Abstract
We describe our submission to the PASCAL Recognizing Textual Entailment Challenge, which attempts to isolate the set of Text-Hypothesis pairs whose categorization can be accurately predicted based solely on syntactic cues. Two human annotators examined each pair, showing that a surprisingly large proportion of the data – 34% of the test items – can be handled with syntax alone, while adding information from a general-purpose thesaurus increases this to 48%.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collins, M., Duffy, N.: New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In: Proceedings of ACL 2002, Philadelphia, PA (2002)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: The Proceedings of the PASCAL Recognising Textual Entailment Challenge (April 2005 )
Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. Computational Linguistics 28(3), 245–288 (2002)
Hacioglu, K., Pradhan, S., Ward, W., Martin, J.H., Jurafsky, D.: Semantic Role Labeling by Tagging Syntactic Chunks. In: Proceedings of the Eighth Conference on Natural Language Learning (CONLL 2004), Boston,MA, May 6-7 (2004)
Henderson, J.: Discriminative training of a neural network statistical parser. In: Proceedings of ACL 2004, Barcelona, Spain (2004)
Ringger, E., Moore, R.C., Charniak, E., Vanderwende, L., Suzuki, H.: Using the Penn Treebank to Evaluate Non-Treebank Parsers. In: Proceedings of the 2004 Language Resources and Evaluation Conference (LREC), Lisbon, Portugal (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vanderwende, L., Dolan, W.B. (2006). What Syntax Can Contribute in the Entailment Task. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_11
Download citation
DOI: https://doi.org/10.1007/11736790_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33427-9
Online ISBN: 978-3-540-33428-6
eBook Packages: Computer ScienceComputer Science (R0)