Jia Meng
Applied Filters
- Jia Meng
- AuthorRemove filter
People
Colleagues
- Jia Meng (13)
- Xiaodong Cui (3)
- Bowen Song (2)
- Jingxian Zhou (2)
- Kunqi Chen (2)
- Manjeet K Rao (2)
- Shaowu Zhang (2)
- Yidong Chen (2)
- Yufei Huang (2)
- Yuxin Zhang (2)
- Yuxuan Wu (2)
- Jianqiu Zhang (1)
- Lei Sun (1)
- Songyao Zhang (1)
- Xiaonan Fan (1)
- Xuesong Wang (1)
- Yidong Chen (1)
- Yidong Chen (1)
- Yuan Qi (1)
- Zhen Wei (1)
Publication
Proceedings/Book Names
- BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering (3)
- BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (1)
- BIBE2020: Proceedings of the Fourth International Conference on Biological Information and Biomedical Engineering (1)
- BIBM '15: Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (1)
- ICBIP '24: Proceedings of the 2024 9th International Conference on Biomedical Signal and Image Processing (1)
Publication Date
Export Citations
Publications
Save this search
Please login to be able to save your searches and receive alerts for new content matching your search criteria.
- research-articleOpen AccessPublished By ACMPublished By ACM
ac4CGE: Predicting N4-acetylcytidine (ac4C) RNA Modification Sites in Archaea Using Graph-based Machine Learning Approach
- Yuchao Li
Department of Biological Science, Xi'an Jiaotong Liverpool University, China
, - Bowen Song
Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, China
, - Jia Meng
Department of Biological Sciences, School of Science; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, University of Liverpool, China
, - Jingxian Zhou
School of AI and Advanced Computing; Department of Computer Science, Xi'an Jiaotong-Liverpool University Entrepreneur College (Taicang); University of Liverpool, China
ICBIP '24: Proceedings of the 2024 9th International Conference on Biomedical Signal and Image Processing•August 2024, pp 91-97• https://doi.org/10.1145/3691521.3691524N4-acetylcytidine(ac4C) is one of the highly conserved epigenetic modifications in RNA, possessing the ability to facilitate mRNA expression, enhance its stability, and influence mRNA decoding efficiency, thereby promoting substrate translation. The ...
- 0Citation
- 90
- Downloads
MetricsTotal Citations0Total Downloads90Last 12 Months90Last 6 weeks33
- Yuchao Li
- research-article
Tissue-specific RNA methylation prediction from gene expression data using sparse regression models
- Jie Jiang
Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
, - Bowen Song
Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
, - Jia Meng
Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
, - Jingxian Zhou
School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University Entrepreneur College (Taicang), Taicang, Suzhou, Jiangsu Province, 215400, China
Department of Computer Science, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
Computers in Biology and Medicine, Volume 169, Issue C•Feb 2024 • https://doi.org/10.1016/j.compbiomed.2023.107892AbstractN6-methyladenosine (m6A) is a highly prevalent and conserved post-transcriptional modification observed in mRNA and long non-coding RNA (lncRNA). Identifying potential m6A sites within RNA sequences is crucial for unraveling the potential ...
Graphical abstractDisplay Omitted
Highlights- Innovative models predict tissue-specific methylation from gene expression using a single-site-based elastic net approach.
- The ensemble model demonstrates robust performance for tissue-specific methylation levels across all 22 human ...
- 0Citation
MetricsTotal Citations0
- Jie Jiang
- research-articlePublished By ACMPublished By ACM
A Meta-analysis: Evaluating the Effect of METTL3/METTL14 on m6A Level Based on Knockdown Samples
- Yuxin Zhang
Xi'an Jiaotong and Liverpool University, China
, - Yuxuan Wu
Xi'an Jiaotong and Liverpool University, China
, - Di Zhen
Xi'an Jiaotong and Liverpool University, China
, - Kunqi Chen
Xi'an Jiaotong and Liverpool University, China
, - Jia Meng
Xi'an Jiaotong and Liverpool University, China
BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering•July 2021, Article No.: 37, pp 1-4• https://doi.org/10.1145/3469678.3469715N6-methyladenosine (m6A) is a dynamic modification regulated by the m6A enzymes prevalent on mRNA. The Mettl3 and mettl14 are two subunits of methyltransferase. Different studies have shown that knockout of the METL3 and MTEL14 genes has the potential ...
- 0Citation
- 34
- Downloads
MetricsTotal Citations0Total Downloads34Last 12 Months5Last 6 weeks1
- Yuxin Zhang
- research-articlePublished By ACMPublished By ACM
Prediction of m6A Reader Substrate Sites Using Deep Convolutional and Recurrent Neural Network
- Yuxuan Wu
Xi'an Jiaotong-Liverpool University, China
, - Yuxin Zhang
Xi'an Jiaotong-Liverpool University, China
, - Ruoqi Wang
Xi'an Jiaotong-Liverpool University, China
, - Jia Meng
Xi'an Jiaotong-Liverpool University, China
, - Kunqi Chen
Fujian Medical University, China
, - Yiyou Song
Xi'an Jiaotong-Liverpool University, China
, - Daiyun Huang
Xi'an Jiaotong-Liverpool University, China
BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering•July 2021, Article No.: 28, pp 1-4• https://doi.org/10.1145/3469678.3469706N6-methyladenosine (m6A), one of the most common post-transcriptional mRNA modifications, has been proved to correlate with multiple biological functions through the process of binding to specific m6A reader proteins. Various m6A readers exist among the ...
- 0Citation
- 76
- Downloads
MetricsTotal Citations0Total Downloads76Last 12 Months17Last 6 weeks3
- Yuxuan Wu
- research-articlePublished By ACMPublished By ACM
Computational Prediction of N6-methyladenosine (m6A) RNA Methylation in SARS-CoV-2 Viral Transcripts
- Qingru Xu
Xi'an Jiaotong-Liverpool University, China
, - Xiangyu Wu
Xi'an Jiaotong-Liverpool University, China
, - Jia Meng
Xi'an Jiaotong-Liverpool University, China
BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering•July 2021, Article No.: 11, pp 1-4• https://doi.org/10.1145/3469678.3469689SARS-CoV-2 caused atypical pneumonia (COVID-19) is an ongoing pandemic that seriously threat the global public health. Many people die from this disease with severe symptoms. The most prevalent m6A RNA modification may be involved in by assisting the ...
- 0Citation
- 55
- Downloads
MetricsTotal Citations0Total Downloads55Last 12 Months4Last 6 weeks2
- Qingru Xu
- research-article
FBCwPlaid: A Functional Biclustering Analysis of Epi-Transcriptome Profiling Data Via a Weighted Plaid Model
- Shutao Chen
Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
, - Lin Zhang
Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
, - Lin Lu
Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
, - Jia Meng
Department of Biological Sciences, AI University Re-search Center, Xi'an Jiaotong-Liverpool University, Suzhou, China
, - Hui Liu
Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Volume 19, Issue 3•May-June 2022, pp 1640-1650 • https://doi.org/10.1109/TCBB.2021.3049366Recent studies have shown that in-depth studies on epi-transcriptomic patterns of N6-methyladenosine (m<sup>6</sup>A) may help understand its complex functions and co-regulatory mechanisms. Since most biclustering algorithms are developed in scenarios of ...
- 0Citation
- 9
- Downloads
MetricsTotal Citations0Total Downloads9Last 12 Months3
- Shutao Chen
- research-articlePublished By ACMPublished By ACM
An Improved Algorithm for Estimating the Distribution of RNA-related Genomic Features
- Jinge Wu
Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
, - Lihan Zhang
Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
, - Yuanzhe Wang
Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
, - Jia Meng
Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
, - Jionglong Su
Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
, - Yue Wang
Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
BIBE2020: Proceedings of the Fourth International Conference on Biological Information and Biomedical Engineering•July 2020, Article No.: 3, pp 1-5• https://doi.org/10.1145/3403782.3403785In this paper, we look into the correction on the ambiguities in the conversion between genome-based coordinates and RNA-based coordinates. An improved algorithm for estimating the distribution of RNA-related genomic features is proposed based on our ...
- 0Citation
- 50
- Downloads
MetricsTotal Citations0Total Downloads50Last 12 Months4Last 6 weeks1
- Jinge Wu
- abstractPublished By ACMPublished By ACM
A Machine Learning Approach for Uncovering N6-methyladenosine-Disease Association
- Songyao Zhang
Northwestern Polytechnical University, Xi'an, Shaanxi, China, China
, - Shaowu Zhang
Northwestern Polytechnical University, Xi'an, Shaanxi, China, China
, - Xiaonan Fan
Northwestern Polytechnical University, Xi'an, Shaanxi, China, China
, - Jia Meng
Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China, China
, - Yidong Chen
University of Texas Health San Antonio, San Antonio, USA
, - Yuifei Huang
University of Texas at San Antonio, San Antonio, USA
BCB '18: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics•August 2018, pp 600-600• https://doi.org/10.1145/3233547.3233691- 0Citation
- 77
- Downloads
MetricsTotal Citations0Total Downloads77
- Songyao Zhang
- research-article
MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data
- Xiaodong Cui
Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX
, - Lin Zhang
Department of Information Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
, - Jia Meng
Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China.
, - Manjeet K. Rao
Greehey Children's Cancer Research Institute, San Antonio, TX
, - Yidong Chen
Greehey Children's Cancer Research Institute, San Antonio, TX
, - Yufei Huang
Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Volume 15, Issue 2•March 2018, pp 526-534 • https://doi.org/10.1109/TCBB.2015.2403355N6-Methyladenosine m6A transcriptome methylation is an exciting new research area that just captures the attention of research community. We present in this paper, MeTDiff, a novel computational tool for predicting differential m6A methylation sites from ...
- 0Citation
- 80
- Downloads
MetricsTotal Citations0Total Downloads80Last 12 Months3Last 6 weeks1
- Xiaodong Cui
- research-article
Cancer Progression Prediction Using Gene Interaction Regularized Elastic Net
- Lin Zhang
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
, - Hui Liu
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
, - Yufei Huang
Department of Electrical Computational Engineering, The University of Texas at San Antonio, San Antonio, TX
, - Xuesong Wang
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
, - Yidong Chen
Department of Epidemiology and Biostatistics, University of Texas Health Science Center, SanAntonio, TX
, - Jia Meng
Department of Biological Sciences, HRINU, SUERI, Xi'an Jiaotong-Liverpool University, Suzhou, China
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Volume 14, Issue 1•January 2017, pp 145-154 • https://doi.org/10.1109/TCBB.2015.2511758Different types of genomic aberration may simultaneously contribute to tumorigenesis. To obtain a more accurate prognostic assessment to guide therapeutic regimen choice for cancer patients, the heterogeneous multi-omics data should be integrated ...
- 4Citation
- 85
- Downloads
MetricsTotal Citations4Total Downloads85Last 12 Months5Last 6 weeks1
- Lin Zhang
- Article
Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates
- Xiaodong Cui
Department of Electrical and Computer Engineering, University of Texas at San, San Antonio, 78230, USA
, - Zhen Wei
Department of Biological Sciences, XJTLU-Huai'an Research Institute of New-type Urbanization, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
, - Lin Zhang
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221116, China
, - Hui Liu
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221116, China
, - Lei Sun
School of Information Engineering, Yangzhou University, Jiangsu 225127, China
, - Shao-Wu Zhang
Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710027, China
, - Yufei Huang
Department of Electrical and Computer Engineering, University of Texas at San, San Antonio, 78230, USA
, - Jia Meng
Department of Biological Sciences, XJTLU-Huai'an Research Institute of New-type Urbanization, Xi'an Jiaotong-Liverpool, University, Suzhou, Jiangsu 215123, China
BIBM '15: Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)•November 2015, pp 1536-1542• https://doi.org/10.1109/BIBM.2015.7359904Biological features, such as, genes, transcription factor binding sites, SNPs, etc., are usually denoted with genome-based coordinates as the genomic features. While genome-based representation is usually very effective, it can be tedious to examine the ...
- 0Citation
MetricsTotal Citations0
- Xiaodong Cui
- research-article
Exome-based analysis for RNA epigenome sequencing data
Bioinformatics, Volume 29, Issue 12•June 2013, pp 1565-1567 • https://doi.org/10.1093/bioinformatics/btt171Motivation: Fragmented RNA immunoprecipitation combined with RNA sequencing enabled the unbiased study of RNA epigenome at a near single-base resolution; however, unique features of this new type of data call for novel computational techniques.
...
- 1Citation
MetricsTotal Citations1
- articlefree
Uncovering transcriptional regulatory networks by sparse Bayesian factor model
- Jia Meng
Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX
, - Jianqiu Zhang
Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX
, - Yuan Qi
Departments of Computer Science and Statistics, Purdue University, West Lafayette, IN
, - Yidong Chen
Department of Epidemiology and Biostatistics, UT Health Science Center at San Antonio, San Antonio, TX and Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, TX
, - Yufei Huang
Dept. of Electrical and Comp. Eng., Univ. of Texas at San Antonio, San Antonio, TX and Dept. of Epidemiology and Biostatistics, UT Health Science Center at San Antonio, TX and Greehey Children's Cancer Res. Inst., UT Health Science Center at San Antonio, TX
EURASIP Journal on Advances in Signal Processing, Volume 2010•March 2010, Article No.: 3, pp 1-18 • https://doi.org/10.1155/2010/538919The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, ...
- 0Citation
- 72
- Downloads
MetricsTotal Citations0Total Downloads72Last 12 Months38Last 6 weeks8
- Jia Meng
Author Profile Pages
- Description: The Author Profile Page initially collects all the professional information known about authors from the publications record as known by the ACM bibliographic database, the Guide. Coverage of ACM publications is comprehensive from the 1950's. Coverage of other publishers generally starts in the mid 1980's. The Author Profile Page supplies a quick snapshot of an author's contribution to the field and some rudimentary measures of influence upon it. Over time, the contents of the Author Profile page may expand at the direction of the community.
Please see the following 2007 Turing Award winners' profiles as examples: - History: Disambiguation of author names is of course required for precise identification of all the works, and only those works, by a unique individual. Of equal importance to ACM, author name normalization is also one critical prerequisite to building accurate citation and download statistics. For the past several years, ACM has worked to normalize author names, expand reference capture, and gather detailed usage statistics, all intended to provide the community with a robust set of publication metrics. The Author Profile Pages reveal the first result of these efforts.
- Normalization: ACM uses normalization algorithms to weigh several types of evidence for merging and splitting names.
These include:- co-authors: if we have two names and cannot disambiguate them based on name alone, then we see if they have a co-author in common. If so, this weighs towards the two names being the same person.
- affiliations: names in common with same affiliation weighs toward the two names being the same person.
- publication title: names in common whose works are published in same journal weighs toward the two names being the same person.
- keywords: names in common whose works address the same subject matter as determined from title and keywords, weigh toward being the same person.
The more conservative the merging algorithms, the more bits of evidence are required before a merge is made, resulting in greater precision but lower recall of works for a given Author Profile. Many bibliographic records have only author initials. Many names lack affiliations. With very common family names, typical in Asia, more liberal algorithms result in mistaken merges.
Automatic normalization of author names is not exact. Hence it is clear that manual intervention based on human knowledge is required to perfect algorithmic results. ACM is meeting this challenge, continuing to work to improve the automated merges by tweaking the weighting of the evidence in light of experience.
- Bibliometrics: In 1926, Alfred Lotka formulated his power law (known as Lotka's Law) describing the frequency of publication by authors in a given field. According to this bibliometric law of scientific productivity, only a very small percentage (~6%) of authors in a field will produce more than 10 articles while the majority (perhaps 60%) will have but a single article published. With ACM's first cut at author name normalization in place, the distribution of our authors with 1, 2, 3..n publications does not match Lotka's Law precisely, but neither is the distribution curve far off. For a definition of ACM's first set of publication statistics, see Bibliometrics
- Future Direction:
The initial release of the Author Edit Screen is open to anyone in the community with an ACM account, but it is limited to personal information. An author's photograph, a Home Page URL, and an email may be added, deleted or edited. Changes are reviewed before they are made available on the live site.
ACM will expand this edit facility to accommodate more types of data and facilitate ease of community participation with appropriate safeguards. In particular, authors or members of the community will be able to indicate works in their profile that do not belong there and merge others that do belong but are currently missing.
A direct search interface for Author Profiles will be built.
An institutional view of works emerging from their faculty and researchers will be provided along with a relevant set of metrics.
It is possible, too, that the Author Profile page may evolve to allow interested authors to upload unpublished professional materials to an area available for search and free educational use, but distinct from the ACM Digital Library proper. It is hard to predict what shape such an area for user-generated content may take, but it carries interesting potential for input from the community.
Bibliometrics
The ACM DL is a comprehensive repository of publications from the entire field of computing.
It is ACM's intention to make the derivation of any publication statistics it generates clear to the user.
- Average citations per article = The total Citation Count divided by the total Publication Count.
- Citation Count = cumulative total number of times all authored works by this author were cited by other works within ACM's bibliographic database. Almost all reference lists in articles published by ACM have been captured. References lists from other publishers are less well-represented in the database. Unresolved references are not included in the Citation Count. The Citation Count is citations TO any type of work, but the references counted are only FROM journal and proceedings articles. Reference lists from books, dissertations, and technical reports have not generally been captured in the database. (Citation Counts for individual works are displayed with the individual record listed on the Author Page.)
- Publication Count = all works of any genre within the universe of ACM's bibliographic database of computing literature of which this person was an author. Works where the person has role as editor, advisor, chair, etc. are listed on the page but are not part of the Publication Count.
- Publication Years = the span from the earliest year of publication on a work by this author to the most recent year of publication of a work by this author captured within the ACM bibliographic database of computing literature (The ACM Guide to Computing Literature, also known as "the Guide".
- Available for download = the total number of works by this author whose full texts may be downloaded from an ACM full-text article server. Downloads from external full-text sources linked to from within the ACM bibliographic space are not counted as 'available for download'.
- Average downloads per article = The total number of cumulative downloads divided by the number of articles (including multimedia objects) available for download from ACM's servers.
- Downloads (cumulative) = The cumulative number of times all works by this author have been downloaded from an ACM full-text article server since the downloads were first counted in May 2003. The counts displayed are updated monthly and are therefore 0-31 days behind the current date. Robotic activity is scrubbed from the download statistics.
- Downloads (12 months) = The cumulative number of times all works by this author have been downloaded from an ACM full-text article server over the last 12-month period for which statistics are available. The counts displayed are usually 1-2 weeks behind the current date. (12-month download counts for individual works are displayed with the individual record.)
- Downloads (6 weeks) = The cumulative number of times all works by this author have been downloaded from an ACM full-text article server over the last 6-week period for which statistics are available. The counts displayed are usually 1-2 weeks behind the current date. (6-week download counts for individual works are displayed with the individual record.)
ACM Author-Izer Service
Summary Description
ACM Author-Izer is a unique service that enables ACM authors to generate and post links on both their homepage and institutional repository for visitors to download the definitive version of their articles from the ACM Digital Library at no charge.
Downloads from these sites are captured in official ACM statistics, improving the accuracy of usage and impact measurements. Consistently linking to definitive version of ACM articles should reduce user confusion over article versioning.
ACM Author-Izer also extends ACM’s reputation as an innovative “Green Path” publisher, making ACM one of the first publishers of scholarly works to offer this model to its authors.
To access ACM Author-Izer, authors need to establish a free ACM web account. Should authors change institutions or sites, they can utilize the new ACM service to disable old links and re-authorize new links for free downloads from a different site.
How ACM Author-Izer Works
Authors may post ACM Author-Izer links in their own bibliographies maintained on their website and their own institution’s repository. The links take visitors to your page directly to the definitive version of individual articles inside the ACM Digital Library to download these articles for free.
The Service can be applied to all the articles you have ever published with ACM.
Depending on your previous activities within the ACM DL, you may need to take up to three steps to use ACM Author-Izer.
For authors who do not have a free ACM Web Account:
- Go to the ACM DL http://dl.acm.org/ and click SIGN UP. Once your account is established, proceed to next step.
For authors who have an ACM web account, but have not edited their ACM Author Profile page:
- Sign in to your ACM web account and go to your Author Profile page. Click "Add personal information" and add photograph, homepage address, etc. Click ADD AUTHOR INFORMATION to submit change. Once you receive email notification that your changes were accepted, you may utilize ACM Author-izer.
For authors who have an account and have already edited their Profile Page:
- Sign in to your ACM web account, go to your Author Profile page in the Digital Library, look for the ACM Author-izer link below each ACM published article, and begin the authorization process. If you have published many ACM articles, you may find a batch Authorization process useful. It is labeled: "Export as: ACM Author-Izer Service"
ACM Author-Izer also provides code snippets for authors to display download and citation statistics for each “authorized” article on their personal pages. Downloads from these pages are captured in official ACM statistics, improving the accuracy of usage and impact measurements. Consistently linking to the definitive version of ACM articles should reduce user confusion over article versioning.
Note: You still retain the right to post your author-prepared preprint versions on your home pages and in your institutional repositories with DOI pointers to the definitive version permanently maintained in the ACM Digital Library. But any download of your preprint versions will not be counted in ACM usage statistics. If you use these AUTHOR-IZER links instead, usage by visitors to your page will be recorded in the ACM Digital Library and displayed on your page.
FAQ
- Q. What is ACM Author-Izer?
A. ACM Author-Izer is a unique, link-based, self-archiving service that enables ACM authors to generate and post links on either their home page or institutional repository for visitors to download the definitive version of their articles for free.
- Q. What articles are eligible for ACM Author-Izer?
- A. ACM Author-Izer can be applied to all the articles authors have ever published with ACM. It is also available to authors who will have articles published in ACM publications in the future.
- Q. Are there any restrictions on authors to use this service?
- A. No. An author does not need to subscribe to the ACM Digital Library nor even be a member of ACM.
- Q. What are the requirements to use this service?
- A. To access ACM Author-Izer, authors need to have a free ACM web account, must have an ACM Author Profile page in the Digital Library, and must take ownership of their Author Profile page.
- Q. What is an ACM Author Profile Page?
- A. The Author Profile Page initially collects all the professional information known about authors from the publications record as known by the ACM Digital Library. The Author Profile Page supplies a quick snapshot of an author's contribution to the field and some rudimentary measures of influence upon it. Over time, the contents of the Author Profile page may expand at the direction of the community. Please visit the ACM Author Profile documentation page for more background information on these pages.
- Q. How do I find my Author Profile page and take ownership?
- A. You will need to take the following steps:
- Create a free ACM Web Account
- Sign-In to the ACM Digital Library
- Find your Author Profile Page by searching the ACM Digital Library for your name
- Find the result you authored (where your author name is a clickable link)
- Click on your name to go to the Author Profile Page
- Click the "Add Personal Information" link on the Author Profile Page
- Wait for ACM review and approval; generally less than 24 hours
- Q. Why does my photo not appear?
- A. Make sure that the image you submit is in .jpg or .gif format and that the file name does not contain special characters
- Q. What if I cannot find the Add Personal Information function on my author page?
- A. The ACM account linked to your profile page is different than the one you are logged into. Please logout and login to the account associated with your Author Profile Page.
- Q. What happens if an author changes the location of his bibliography or moves to a new institution?
- A. Should authors change institutions or sites, they can utilize ACM Author-Izer to disable old links and re-authorize new links for free downloads from a new location.
- Q. What happens if an author provides a URL that redirects to the author’s personal bibliography page?
- A. The service will not provide a free download from the ACM Digital Library. Instead the person who uses that link will simply go to the Citation Page for that article in the ACM Digital Library where the article may be accessed under the usual subscription rules.
However, if the author provides the target page URL, any link that redirects to that target page will enable a free download from the Service.
- Q. What happens if the author’s bibliography lives on a page with several aliases?
- A. Only one alias will work, whichever one is registered as the page containing the author’s bibliography. ACM has no technical solution to this problem at this time.
- Q. Why should authors use ACM Author-Izer?
- A. ACM Author-Izer lets visitors to authors’ personal home pages download articles for no charge from the ACM Digital Library. It allows authors to dynamically display real-time download and citation statistics for each “authorized” article on their personal site.
- Q. Does ACM Author-Izer provide benefits for authors?
- A. Downloads of definitive articles via Author-Izer links on the authors’ personal web page are captured in official ACM statistics to more accurately reflect usage and impact measurements.
Authors who do not use ACM Author-Izer links will not have downloads from their local, personal bibliographies counted. They do, however, retain the existing right to post author-prepared preprint versions on their home pages or institutional repositories with DOI pointers to the definitive version permanently maintained in the ACM Digital Library.
- Q. How does ACM Author-Izer benefit the computing community?
- A. ACM Author-Izer expands the visibility and dissemination of the definitive version of ACM articles. It is based on ACM’s strong belief that the computing community should have the widest possible access to the definitive versions of scholarly literature. By linking authors’ personal bibliography with the ACM Digital Library, user confusion over article versioning should be reduced over time.
In making ACM Author-Izer a free service to both authors and visitors to their websites, ACM is emphasizing its continuing commitment to the interests of its authors and to the computing community in ways that are consistent with its existing subscription-based access model.
- Q. Why can’t I find my most recent publication in my ACM Author Profile Page?
- A. There is a time delay between publication and the process which associates that publication with an Author Profile Page. Right now, that process usually takes 4-8 weeks.
- Q. How does ACM Author-Izer expand ACM’s “Green Path” Access Policies?
- A. ACM Author-Izer extends the rights and permissions that authors retain even after copyright transfer to ACM, which has been among the “greenest” publishers. ACM enables its author community to retain a wide range of rights related to copyright and reuse of materials. They include:
- Posting rights that ensure free access to their work outside the ACM Digital Library and print publications
- Rights to reuse any portion of their work in new works that they may create
- Copyright to artistic images in ACM’s graphics-oriented publications that authors may want to exploit in commercial contexts
- All patent rights, which remain with the original owner