[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2755996.2756669acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Formal Solutions of Linear Differential Systems with Essential Singularities in their Coefficients

Published: 24 June 2015 Publication History

Abstract

The local analysis of formal meromorphic linear differential systems with coefficients in C((z)) has been widely studied in the literature and there exist various computer algebra algorithms for computing formal solutions of such systems. In the present paper we extend the algorithm presented in [3] to allow more general systems. More precisely, we give an algorithm for computing a formal fundamental matrix of solutions around z=0 of systems with coefficients in C((z))[[X]], where X is transcendental and hyperexponential over C((z)).

References

[1]
A. Aparicio Monforte. Méthodes effectives pour l'intégrabilité des systèmes dynamiques. PhD thesis, Univ. de Limoges (France), 2010.
[2]
D. G. Babbitt and V. S. Varadarajan. Formal reduction theory of meromorphic differential equations: a group theoretic view. Pacific J. Math, 109(1):1--80, 1983.
[3]
M. A. Barkatou. An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system. Applicable Algebra in Engineering, Communication and Computing, 8:1--23, 1997.
[4]
M. A. Barkatou, G. Broughton, and E. Pflügel. Regular systems of linear functional equations and applications. In Proc. of ISSAC'08, pages 15--22, Hagenberg, Austria, 2008.
[5]
M. A. Barkatou and E. Pflügel. An algorithm computing the regular formal solutions of a system of linear differential equations. J. of Symb. Comp., 28(4--5):569--587, 1999.
[6]
M. A. Barkatou and C. Raab. Solving linear ordinary differential systems in hyperexponential extensions. In Proc. of ISSAC'12, pages 51--58, Grenoble, France, 2012.
[7]
M. Bouffet. Un lemme de Hensel pour les opérateurs différentiels. C. R. Acad. Sci., t. 331, Série I:277--280, 2000.
[8]
M. Bouffet. Théorie de Galois différentielle pour des équations différentielles linéaires dont les coefficients admettent des singularités essentielles. PhD thesis, Univ. de Toulouse (France), 2002.
[9]
M. Bouffet. Differential Galois theory for an exponential extension of C((z)). Bull. Soc. Math. France, 131(4):587--601, 2003.
[10]
A. Fredet. Résolution sous forme finie d'équations différentielles linéaires et extensions exponentielles. PhD thesis, École Polytechnique (France), 2001.
[11]
A. Fredet. Linear differential equations in exponential extensions. J. of Symb. Comp., 38:975--1002, 2004.
[12]
I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982.
[13]
M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A.-A. Rajabi. Approximate analytical solution of the Yukawa potential with arbitrary angular momenta. Chinese Physics Letters, 29(8), 2012.
[14]
A. Hilali and A. Wazner. Un algorithme de calcul de l'invariant de katz d'un système différentiel linéaire. Annales de l'Institut Fourier, 36(3):67--83, 1986.
[15]
D. W. Hoffmann. The Newton polygon of a product of power series. Manuscripta Math., 85:109--118, 1994.
[16]
M. Lazard. Les zéros d'une fonction analytique d'une variable sur un corps valué complet. Publications Mathématiques de l'I.H.É.S., 14:47--75, 1962.
[17]
M. Lazard. Polygone de Newton et théorème de préparation. Séminaire Dubreuil. Algèbre, 26, exp. 15:1--4, 1972-1973.
[18]
J. Moser. The order of a singularity in Fuchs' theory. Mathematische Zeitschrift, 72:379--398, 1960.
[19]
H. L. Turritin. Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point. Acta Math., 93:27--66, 1955.
[20]
H. Volklein. Groups as Galois Groups, An Introduction. Cambridge Studies in Advanced Mathematics (53), Cambridge University Press, 1996.
[21]
W. Wasow. Asymptotic Expansions For Ordinary Differential Equations. Dover Publi., New York, 1965.

Index Terms

  1. Formal Solutions of Linear Differential Systems with Essential Singularities in their Coefficients

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '15: Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation
    June 2015
    374 pages
    ISBN:9781450334358
    DOI:10.1145/2755996
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 June 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algorithms
    2. computer algebra
    3. formal reduction
    4. hyperexponential extensions
    5. linear differential systems with essential singularities

    Qualifiers

    • Research-article

    Conference

    ISSAC'15
    Sponsor:

    Acceptance Rates

    ISSAC '15 Paper Acceptance Rate 43 of 71 submissions, 61%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 67
      Total Downloads
    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Dec 2024

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media