[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3674029.3674047acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmltConference Proceedingsconference-collections
research-article

Vision System for Automatic Inspection of Solder Joints in Electronic Boards

Published: 11 September 2024 Publication History

Abstract

In this work, a vision system oriented to the quality inspection of solder joints in electronic boards is presented. The proposed vision system is composed of two cameras (one frontal and one lateral), to achieve a general view of the joints; a light source, to ensure good and robust lighting conditions; and a mobile system (i.e. 3-axis cartesian robot), to automatically move to each image capture position and get the optimal focus. Moreover, a classifier based on Artificial Intelligence is fed with the captured images to perform an automatic inspection of the soldering joints. The output for each one of them is the belonging to either a correct or incorrect joint group. The tests carried out with real samples show the validity of the proposed system for its future deployment in the factory.

References

[1]
S. Althaf, C. W. Babbitt y R. Chen, «Forecasting electronic waste flows for effective circular economy planning,» Resources, Conservation and Recycling, vol. 151, p. 104362, 2019.
[2]
C. W. Babbit y S. Althaf, «Disruption risks to material supply chains in the electronics sector,» Resources, Conservation and Recycling, vol. 167, p. 105248, 2021.
[3]
A. A. R. M. A. Ebayyeh y A. Mousavi, «A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry,» IEEE Access, vol. 8, pp. 183192-183271, 2020.
[4]
Y. Mastai, Materials Science, Rijeka: IntechOpen, 2013.
[5]
H. Wankerl, M. L. Stern, P. Altieri-Weimar, S. Al-Baddai, K.-J. Lang, F. Roider y E. W. Lang, «Fully convolutional networks for void segmentation in X-ray images of solder joints,» Journal of Manufacturing Processes, vol. 57, pp. 762–767, 2020.
[6]
J. F. I. Nturambirwe y U. L. Opara, «Machine learning applications to non-destructive defect detection in horticultural products,» Biosystems Engineering, vol. 189, pp. 60–83, 2020.
[7]
A. Z. da Costa, H. E. Figueroa y J. A. Fracarolli, «Computer vision based detection of external defects on tomatoes using deep learning,» Biosystems Engineering, vol. 190, pp. 131–144, 2020.
[8]
R. S. Peres, J. Barata, P. Leitao y G. Garcia, «Multistage quality control using machine learning in the automotive industry,» IEEE Access, vol. 7, pp. 79908–79916, 2019.
[9]
A. Korodi, D. Anitei, A. Boitor y I. Silea, «Image-processing-based low-cost fault detection solution for end-of-line ECUs in automotive manufacturing,» Sensors, vol. 20, nº 12, p. 3520, 2020.
[10]
Y.-J. Han y H.-J. Yu, «Fabric defect detection system using stacked convolutional denoising auto-encoders trained with synthetic defect data,» Applied Sciences, vol. 10, p. 2511, 2020.
[11]
W. Dai, A. Mujeeb, M. Erdt y A. Sourin, «Soldering defect detection in automatic optical inspection,» Elsevier, vol. 43, p. 101004, 2020.
[12]
Y. Peng, Y. Yan, G. Chen y B. Feng, «Automatic compact camera module solder joint inspection method based on machine vision,» Measurement Science and Technology, vol. 33, nº 10, p. 105114, 2022.
[13]
K. Zhang, T. Huang, Z. Su y T. Guan, «Design of Solder Quality Inspection System Based on Machine Vision,» de 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, 2021.
[14]
K. Schmidt, D. Rauchensteiner, C. Voigt, N. Thielen, J. B{\"o}nig, G. Beitinger y J. Franke, «An Automated Optical Inspection System for PIP Solder Joint Classification Using Convolutional Neural Networks,» de 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), 2021.
[15]
Cognex, «Capacitor Soldering Inspection,» Cognex, 2023. [En línea]. Available: https://www.cognex.com/industries/electronics/pcb-assembly/capacitor-soldering-inspection. [Último acceso: 04 10 2023].
[16]
I. V. S. Ltd, «Solder Inspection Machine Vision Techniques,» Industrial Vision Systems Ltd, 2023. [En línea]. Available: https://www.wileyindustrynews.com/en/products/vision/solder-inspection-machine-vision-techniques. [Último acceso: 04 10 2023].
[17]
R.-J. Yan, E. Kayacan, I.-M. Chen, L. K. Tiong y J. Wu, «QuicaBot: Quality inspection and assessment robot,» IEEE Transactions on Automation Science and Engineering, vol. 16, nº 2, pp. 506–517, 2018.
[18]
J. Kim, D. Chung, Y. Kim y H. Kim, «Deep learning-based 3D reconstruction of scaffolds using a robot dog,» Automation in Construction, vol. 134, p. 104092, 2022.
[19]
Z. Zhang, S. L. Epstein, C. Breen, S. Xia, Z. Zhu y C. Volkmann, «Robots in the Garden: Artificial Intelligence and Adaptive Landscapes,» Wichmann Verlag, 2023.
[20]
J. a. B. B. L. a. K. L. J. a. P. J. S. Li, «Stereo vision based automated solder ball height and substrate coplanarity inspection,» IEEE Transactions on Automation Science and Engineering, vol. 13, nº 2, pp. 757–771, 2015.
[21]
D. Zhao, F. Kong y F. Du, «Vision-based adaptive stereo measurement of pins on multi-type electrical connectors,» Measurement Science and Technology, vol. 30, nº 10, p. 105002, 2019.

Index Terms

  1. Vision System for Automatic Inspection of Solder Joints in Electronic Boards

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICMLT '24: Proceedings of the 2024 9th International Conference on Machine Learning Technologies
      May 2024
      336 pages
      ISBN:9798400716379
      DOI:10.1145/3674029
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 September 2024

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Automation
      2. Cartesian Robot
      3. Computer Vision
      4. Deep Learning
      5. Mobile System
      6. Solder Joint Inspection
      7. Vision System

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      ICMLT 2024

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 20
        Total Downloads
      • Downloads (Last 12 months)20
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 11 Jan 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media