[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Opportunistic Transmission of Control Packets for Faster Formation of 6TiSCH Network

Published: 02 January 2021 Publication History

Abstract

Network bootstrapping is one of the initial tasks executed in any wireless network such as Industrial Internet of Things (IIoT). Fast formation of IIoT network helps in resource conservation and efficient data collection. Our probabilistic analysis reveals that the performance of 6TiSCH based IIoT network formation degrades with time because of the following reasons: (i) IETF 6TiSCH Minimal Configuration (6TiSCH-MC) standard considered that beacon frame has the highest priority over all other control packets, (ii) 6TiSCH-MC provides minimal routing information during network formation, and (iii) sometimes, joined node can not transmit control packets due to high congestion in shared slots. To deal with these problems, this article proposes two schemes—opportunistic priority alternation and rate control (OPR) and opportunistic channel access (OCA). OPR dynamically adjusts the priority of control packets and provides sufficient routing information during network bootstrapping, whereas OCA allows the nodes having urgent packet to transmit it in less time. Along with the theoretical analysis of the proposed schemes, we also provide comparison-based simulation and real testbed experiment results to validate the proposed schemes together. The received results show significant performance improvements in terms of joining time and energy consumption.

References

[1]
Diego Dujovne, Thomas Watteyne, Xavier Vilajosana, and Pascal Thubert. 2014. 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Commun. Mag. 52, 12 (Dec. 2014), 36--41.
[2]
Thomas Watteyne, Pere Tuset-Peiro, Xavier Vilajosana, Sofie Pollin, and Bhaskar Krishnamachari. 2017. Teaching communication technologies and standards for the industrial IoT? Use 6TiSCH! IEEE Commun. Mag. 55, 5 (May 2017), 132--137.
[3]
Thomas Watteyne, Vlado Handziski, Xavier Vilajosana, Simon Duquennoy, Oliver Hahm, Emmanuel Baccelli, and Adam Wolisz. 2016. Industrial wireless IP-based cyber-physical systems. Proce. IEEE 104, 5 (May 2016), 1025--1038.
[4]
Thomas Watteyne, Ankur Mehta, and Kris Pister. 2009. Reliability through frequency diversity: Why channel hopping makes sense. In Proceedings of the 6th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks. 116--123.
[5]
IEEE Standards Association. 2012. IEEE standard for local and metropolitan area networks-Part 15.4: Low-rate wireless personal area networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011). IEEE Standards Association, 1--225.
[6]
Atis Elsts, Xenofon Fafoutis, George Oikonomou, Robert Piechocki, and Ian Craddock. 2020. TSCH networks for health IoT: Design, evaluation and trials in the wild. ACM Trans. Internet Things 1, 2 (2020).
[7]
Nicola Accettura, Elvis Vogli, Maria Rita Palattella, Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. 2015. Decentralized traffic aware scheduling in 6TiSCH networks: Design and experimental evaluation. IEEE Internet Things J. 2, 6 (Dec. 2015), 455--470.
[8]
Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. 2013. Standardized protocol stack for the Internet of (Important) Things. IEEE Commun. Surv. Tutor. 15, 3 (Mar. 2013), 1389--1406.
[9]
Xavier Vilajosana, Thomas Watteyne, Tengfei Chang, Mališa Vučinić, Simon Duquennoy, and Pascal Thubert. 2020. IETF 6TiSCH: A tutorial. IEEE Commun. Surv. Tutor. 22, 1 (2020), 595--615. https://ieeexplore.ieee.org/document/8823863.
[10]
Xavier Vilajosana, Kristofer Pister, and Thomas Watteyne. 2017. Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180. IETF. Retrieved from https://tools.ietf.org/html/rfc8180.
[11]
Michael Richardson. 2019. 6TiSCH Zero-Touch Secure Join Protocol. Internet Draft. Retrieved from https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04.
[12]
Malisa Vucinic, Jonathon Simon, Kris Pister, and Michael Richardson. 2017. Minimal Security Framework for 6TiSCH. Internet Draft. Retrieved from https://tools.ietf.org/html/draft-ietf-6tisch-minimal-security-02.
[13]
Elvis Vogli, Giuseppe Ribezzo, Luigi Alfredo Grieco, and Gennaro Boggia. 2015. Fast join and synchronization schema in the IEEE 802.15.4e MAC. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops. 85--90.
[14]
Domenico De Guglielmo, Alessio Seghetti, Giuseppe Anastasi, and Marco Conti. 2014. A performance analysis of the network formation process in IEEE 802.15.4e TSCH wireless sensor/actuator networks. In Proceedings of the IEEE Symposium on Computers and Communications. 1--6.
[15]
Elbis Vogli, Giuseppe Ribezzo, Luigi Alfredo Grieco, and Gennaro Boggia. 2018. Fast network joining algorithms in industrial IEEE 802.15.4 deployments. Ad Hoc Netw. 69 (2018), 65--75.
[16]
Domenico De Guglielmo, Simone Brienza, and Giuseppe Anastasi. 2016. A model-based beacon scheduling algorithm for IEEE 802.15.4e TSCH networks. In Proceedings of the IEEE 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks. 1--9.
[17]
Thang Phan Duy, Thanh Dinh, and Younghan Kim. 2016. A rapid joining scheme based on fuzzy logic for highly dynamic IEEE 802.15. 4e time-slotted channel hopping networks. Int. J. Distrib. Sens. Netw. 12, 8 (2016).
[18]
Carlo Vallati, Simone Brienza, Giuseppe Anastasi, and Sajal K. Das. 2019. Improving network formation in 6TiSCH networks. IEEE Trans. Mob. Comput. 18, 1 (Jan. 2019), 98--110.
[19]
Malisa Vucinic, Thomas Watteyne, and Xavier Vilajosana. 2017. Broadcasting strategies in 6TiSCH networks. Internet Technol. Lett. 1, 1 (2017).
[20]
Alakesh Kalita and Manas Khatua. 2019. Faster joining in 6TiSCH network using dynamic beacon interval. In Proceedings of 11th International Conference on Communication Systems Networks. 454--457.
[21]
Alakesh Kalita and Manas Khatua. 2020. Opportunistic priority alternation scheme for faster formation of 6TiSCH network. In Proceedings of the 21st International Conference on Distributed Computing and Networking (ICDCN’20).
[22]
Alakesh Kalita and Manas Khatua. 2020. Channel condition based dynamic beacon interval for faster formation of 6TiSCH network. IEEE Trans. Mob. Comput. (2020).
[23]
Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner, Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed. In Proceedings of the IEEE 2nd World Forum on Internet of Things (WF-IoT’15). 459--464.
[24]
Ines Khoufi, Pascale Minet, and Badr Rmili. 2017. Beacon advertising in an IEEE 802.15.4e TSCH network for space launch vehicles. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences.
[25]
Tim Winter, Pascal Thubert, Anders Brandt, Jonathan Hui, Richard Kelsey, Philip Levis, Kris Pister, Rene Struik, J. P. Vasseur, and Roger Alexander. 2012. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. IETF. Retrieved from https://tools.ietf.org/html/rfc6550.
[26]
Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. 2015. Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. 337--350.
[27]
Carlo Vallati and Enzo Mingozzi. 2013. Trickle-F: Fair broadcast suppression to improve energy-efficient route formation with the RPL routing protocol. In Proceedings of the Sustainable Internet and ICT for Sustainability (SustainIT’13). 1--9.
[28]
Malisa Vucinic, Gabriele Romaniello, Laurene Guelorget, Bernard Tourancheau, Franck Rousseau, Olivier Alphand, Andrzej Duda, and Laurent Damon. 2014. Topology construction in RPL networks over beacon-enabled 802.15.4. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’14). 1--7.
[29]
Muneer Bani Yassein, Shadi Aljawarneh, and Esra’a Masa’deh. 2017. A new elastic trickle timer algorithm for Internet of Things. J. Netw. Comput. Applic. 89 (2017), 38--47.
[30]
Baraq Ghaleb, Ahmed Y. Al-Dubai, Elias Ekonomou, Imed Romdhani, Youssef Nasser, and Azzedine Boukerche. 2018. A novel adaptive and efficient routing update scheme for low-power lossy networks in IoT. IEEE Internet Things J. 5, 6 (2018), 5177--5189.
[31]
M. Udin Harun Al Rasyid, Isbat Uzzin Nadhori, Amang Sudarsono, and Ridho Luberski. 2014. Analysis of slotted and unslotted CSMA/CA wireless sensor network for E-healthcare system. In Proceedings of the International Conference on Computer, Control, Informatics and Its Applications (IC3INA’14). 53--57.
[32]
Ahmed Naseem Alvi, Safdar Hussain Bouk, Syed Hassan Ahmed, and Muhammad Azfar Yaqub. 2016. Influence of backoff period in slotted CSMA/CA of IEEE 802.15.4. In Wired/Wireless Internet Communications. Springer International Publishing, 40--51.
[33]
Phil Levis, Thomas Clausen, Jonathan Hui, Omprakash Gnawali, and Jeonggil Ko. 2011. The Trickle Algorithm. RFC 6206. IETF. Retrieved from https://tools.ietf.org/html/rfc6206.
[34]
Yang Xiao.2005. Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. Wirel. Commun. 4, 4 (July 2005), 1506--1515.
[35]
Manas Khatua and Sudip Misra. 2016. D2D: Delay-aware distributed dynamic adaptation of contention window in wireless networks. IEEE Trans. Mob. Comput. 15, 2 (Feb. 2016), 322--335.
[36]
Adam Dunkels, B. Gronvall, and Thiemo Voigt. 2004. Contiki—A lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th IEEE International Conference on Local Computer Networks. 455--462.

Cited By

View all
  • (2024)Time-Variant RGB Model for Minimal Cell Allocation and Scheduling in 6TiSCH NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2023.324102123:2(1803-1814)Online publication date: 1-Feb-2024
  • (2024)Delay Aware 6TiSCH IIoT Networks for Energy Efficient Data Transmission by Adopting Federated Learning and Edge ComputingIEEE Transactions on Consumer Electronics10.1109/TCE.2024.341432470:3(5911-5928)Online publication date: Aug-2024
  • (2024)Quick6TiSCH: Accelerating Formation of 6TiSCH Networks with TSCH and RPL2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS)10.1109/MASS62177.2024.00020(66-74)Online publication date: 23-Sep-2024
  • Show More Cited By

Index Terms

  1. Opportunistic Transmission of Control Packets for Faster Formation of 6TiSCH Network

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Internet of Things
        ACM Transactions on Internet of Things  Volume 2, Issue 1
        February 2021
        199 pages
        EISSN:2577-6207
        DOI:10.1145/3430935
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Journal Family

        Publication History

        Published: 02 January 2021
        Accepted: 01 October 2020
        Revised: 01 August 2020
        Received: 01 January 2020
        Published in TIOT Volume 2, Issue 1

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. 6TiSCH
        2. Industrial IoT
        3. network formation
        4. opportunistic resource allocation

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)21
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 01 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Time-Variant RGB Model for Minimal Cell Allocation and Scheduling in 6TiSCH NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2023.324102123:2(1803-1814)Online publication date: 1-Feb-2024
        • (2024)Delay Aware 6TiSCH IIoT Networks for Energy Efficient Data Transmission by Adopting Federated Learning and Edge ComputingIEEE Transactions on Consumer Electronics10.1109/TCE.2024.341432470:3(5911-5928)Online publication date: Aug-2024
        • (2024)Quick6TiSCH: Accelerating Formation of 6TiSCH Networks with TSCH and RPL2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS)10.1109/MASS62177.2024.00020(66-74)Online publication date: 23-Sep-2024
        • (2024)Pairing Strategy for using Multiple Channels in Minimal Cell of 6TiSCH Network2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN)10.1109/ICUFN61752.2024.10624917(286-291)Online publication date: 2-Jul-2024
        • (2024)6TiSCH IIoT network: A reviewComputer Networks10.1016/j.comnet.2024.110759254(110759)Online publication date: Dec-2024
        • (2023)A Gaming and Trust-Model-Based Countermeasure for DIS Attack on 6TiSCH IoT NetworksIEEE Internet of Things Journal10.1109/JIOT.2023.323430010:11(9727-9737)Online publication date: 1-Jun-2023
        • (2023)Adaptive Trickle Timer for Efficient 6TiSCH Network Formation Using Q-LearningIEEE Access10.1109/ACCESS.2023.326571711(37931-37943)Online publication date: 2023
        • (2023)A Novel Approach for Enhanced Network Formation in 6TiSCH-based IoT Low-Power and Lossy NetworksIETE Journal of Research10.1080/03772063.2023.224894170:2(1095-1110)Online publication date: 22-Aug-2023
        • (2022)6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A ReviewACM Transactions on Internet of Things10.1145/35361663:3(1-36)Online publication date: 13-Jul-2022
        • (2022)Introduction and Evaluation of Attachability for Mobile IoT Routing Protocols With Markov Chain AnalysisIEEE Transactions on Network and Service Management10.1109/TNSM.2022.317636519:3(3220-3238)Online publication date: Sep-2022
        • Show More Cited By

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media