[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2425836.2425877acmotherconferencesArticle/Chapter ViewAbstractPublication PagesivcnzConference Proceedingsconference-collections
poster

Evaluation of feature detectors for registering aerial images

Published: 26 November 2012 Publication History

Abstract

The detection, extraction, and matching of image features is a popular method for generating point-to-point correspondences for the estimation of scene and camera geometries. In this work we evaluate the performance of a variety of feature detection algorithms over two reference data sets and a set of aerial images which includes large changes in scene illumination. The evaluated detectors showed expected performance against the reference data sets, and aerial images with constant lighting conditions, but were unsuccessful in aligning image pairs showing strong changes in image exposure and illumination.

References

[1]
M. Agrawal, K. Konolige, and M. R. Blas. CenSurE: center surround extremas for realtime feature detection and matching. In D. Forsyth, P. Torr, and A. Zisserman, editors, Computer Vision -- ECCV 2008, volume 5305, pages 102--115. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[2]
H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3): 346--359, 2008.
[3]
T. Botterill. Visual Navigation for Mobile Robots using the Bag-of-Words Algorithm. PhD thesis, University of Canterbury, Christchurch, New Zealand, 2010.
[4]
T. Botterill, S. Mills, and R. Green. New conditional sampling strategies for speeded-up RANSAC. In Proceedings of the British Machine Vision Conference, 2009.
[5]
O. Chum and J. Matas. Matching with PROSAC -- progressive sample consensus. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 220--226, San Diego, CA, USA.
[6]
K. Cordes, B. Rosenhahn, and J. Ostermann. Increasing the accuracy of feature evaluation benchmarks using differential evolution. In Differential Evolution (SDE), 2011 IEEE Symposium on, pages 1--8. IEEE, Apr. 2011.
[7]
C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment rules. Photogrammetric Computer Vision, 2, 2006.
[8]
C. Evans. Notes on the OpenSURF library. Technical Report CSTR-09-001, University of Bristol, Jan. 2009.
[9]
S. Gauglitz, T. Höllerer, and M. Turk. Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision, 94(3): 335--360, Mar. 2011.
[10]
J. Geusebroek, R. van den Boomgaard, A. Smeulders, and H. Geerts. Color invariance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12): 1338--1350, Dec. 2001.
[11]
C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, page 50, 1988.
[12]
R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition, 2004.
[13]
R. Hess. An open-source SIFT Library. In Proceedings of the international conference on Multimedia, pages 1493--1496, 2010.
[14]
D. G. Lowe. Distinctive image features from Scale-Invariant keypoints. International Journal of Computer Vision, 60(2): 91--110, Nov. 2004.
[15]
K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer Vision -- ECCV 2002, volume 2350, pages 128--142. Springer Berlin Heidelberg, Berlin, Heidelberg.
[16]
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine region detectors. International Journal of Computer Vision, 65(--2): 43--72, Oct. 2005.
[17]
OpenCV development team. OpenCV v2.3 documentation. Technical report, Aug. 2011.
[18]
E. Rosten and T. Drummond. Machine learning for High-Speed corner detection. In A. Leonardis, H. Bischof, and A. Pinz, editors, Computer Vision -- ECCV 2006, volume 3951, pages 430--443. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
[19]
E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1): 105--119, Jan. 2010.
[20]
A. Schmidt, M. Kraft, and A. Kasiński. An evaluation of image feature detectors and descriptors for robot navigation. In L. Bolc, R. Tadeusiewicz, L. J. Chmielewski, and K. Wojciechowski, editors, Computer Vision and Graphics, volume 6375, pages 251--259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[21]
J. Shi and C. Tomasi. Good features to track. In Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994, pages 593--600. IEEE Comput. Soc. Press, 1994.
[22]
C. Tomasi and T. Kanade. Detection and tracking of point features, 1991.
[23]
P. Torr. MLESAC: a new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1): 138--156, Apr. 2000.
[24]
T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision, 3(3): 177--280, 2007.

Cited By

View all
  • (2017)Synthetic Aperture Sonar Track Registration Using SIFT Image CorrespondencesIEEE Journal of Oceanic Engineering10.1109/JOE.2016.263407842:4(901-913)Online publication date: Oct-2017
  • (2013)Pose Priors for Aerial Image Registration2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)10.1109/DICTA.2013.6691515(1-8)Online publication date: Nov-2013

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
IVCNZ '12: Proceedings of the 27th Conference on Image and Vision Computing New Zealand
November 2012
547 pages
ISBN:9781450314732
DOI:10.1145/2425836
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • HRS: Hoare Research Software Ltd.
  • Google Inc.
  • Dept. of Information Science, Univ.of Otago: Department of Information Science, University of Otago, Dunedin, New Zealand

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 November 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. aerial photogrammetry
  2. feature detection
  3. pose estimation

Qualifiers

  • Poster

Conference

IVCNZ '12
Sponsor:
  • HRS
  • Dept. of Information Science, Univ.of Otago
IVCNZ '12: Image and Vision Computing New Zealand
November 26 - 28, 2012
Dunedin, New Zealand

Acceptance Rates

Overall Acceptance Rate 55 of 74 submissions, 74%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2017)Synthetic Aperture Sonar Track Registration Using SIFT Image CorrespondencesIEEE Journal of Oceanic Engineering10.1109/JOE.2016.263407842:4(901-913)Online publication date: Oct-2017
  • (2013)Pose Priors for Aerial Image Registration2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)10.1109/DICTA.2013.6691515(1-8)Online publication date: Nov-2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media