[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2047196.2047265acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

Published: 16 October 2011 Publication History

Abstract

We introduce a novel input device, deForm, that supports 2.5D touch gestures, tangible tools, and arbitrary objects through real-time structured light scanning of a malleable surface of interaction. DeForm captures high-resolution surface deformations and 2D grey-scale textures of a gel surface through a three-phase structured light 3D scanner. This technique can be combined with IR projection to allow for invisible capture, providing the opportunity for co-located visual feedback on the deformable surface. We describe methods for tracking fingers, whole hand gestures, and arbitrary tangible tools. We outline a method for physically encoding fiducial marker information in the height map of tangible tools. In addition, we describe a novel method for distinguishing between human touch and tangible tools, through capacitive sensing on top of the input surface. Finally we motivate our device through a number of sample applications.

Supplementary Material

JPG File (fp220.jpg)
MP4 File (fp220.mp4)

References

[1]
Xbox.com | Kinect. 2010. http://www.xbox.com/en-US/kinect.
[2]
ofxStructured Light. http://code.google.com/p/structured-light/.
[3]
Cassinelli, A. and Ishikawa, M. Khronos projector. ACM SIGGRAPH 2005 Emerging Technologies, ACM Press (2005), 10.
[4]
Chan, L.W., Wu, H.T., Kao, H.S., Lin, H.R., Chen, M.Y,Hsu, Jane, Hung, Y.P. Enabling beyond-surface interactions for interactive surface with an invisible projection. Proc. UIST 2010, ACM Press (2010), 263--272.
[5]
Han, J.Y. Low-cost multi-touch sensing through frustrated total internal reflection. Proc. UIST 2005, ACM Press (2005), 115.
[6]
Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., and Butz, A. Interactions in the Air : Adding Further Depth to Interactive Tabletops. Proc. UIST 2009, ACM Press (2009), 139--148.
[7]
Hilliges, O., Kim, D., and Izadi, S. Creating malleable interactive surfaces using liquid displacement sensing. Proc. Tabletop 2008, IEEE Press (2008), 157--160.
[8]
Hook, J., Taylor, S., Butler, A., Villar, N., and Izadi, S. A reconfigurable ferromagnetic input device. Proc. UIST 2009, ACM Press (2009), 51.
[9]
Ishii, H. and Ullmer, B. Tangible bits. Proc. CHI 1997, ACM Press (1997), 234--241.
[10]
Izadi, S., Hodges, S., Taylor, S., et al. Going beyond the display. Proc. UIST 2008, ACM Press (2008), 269.
[11]
Jansen, Y., Karrer, T., and Borchers, J. MudPad: tactile feedback and haptic texture overlay for touch surfaces. Proc. ITS 2010, ACM Press (2010), 11--14.
[12]
Johnson, M.K. and Adelson, E.H. Retrographic sensing for the measurement of surface texture and shape. Proc. IEEE CVPR 2009, IEEE Press (2009), 1070--1077.
[13]
Kaltenbrunner, M. and Bencina, R. reacTIVision. Proc. TEI 2007, ACM Press (2007), 69.
[14]
Lanman, D. and Taubin, G. Build your own 3D scanner. ACM SIGGRAPH 2009 Courses, ACM Press (2009), 1--94.
[15]
Large, M.J., Large, T., and Travis, A.R.L. Parallel Optics in Waveguide Displays: A Flat Panel Autostereoscopic Display. Journal of Display Technology 6, 10 (2010), 431--437.
[16]
Lecuyer, A., Coquillart, S., Kheddar, A., Richard, P., and Coiffet, P. Pseudo-haptic feedback: can isometric input devices simulate force feedback? Proc. IEEE Virtual Reality 2000, IEEE Comput. Soc, 83--90.
[17]
Lei, S. and Zhang, S. Flexible 3-D shape measurement using projector defocusing. Optics Letters 34, 20 (2009), 3080.
[18]
Malik, S. and Laszlo, J. Visual touchpad. Proc. ICMI 2004, ACM Press (2004), 289.
[19]
Massie, T.H. and Salisbury, J.K. The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. Proceedings of the ASME Winter Annual Meeting Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, (1994), 295--300.
[20]
Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. Efficiently combining positions and normals for precise 3D geometry. ACM Transactions on Graphics 24, 3 (2005), 536.
[21]
Otsuki, M., Sugihara, K., Kimura, A., Shibata, F., and Tamura, H. MAI painting brush: an interactive device that realizes the feeling of real painting. Proc. UIST 2010, ACM Press (2010), 97--100.
[22]
Overholt, D. The MATRIX: a novel controller for musical expression. Proc. NIME 2001, AMC (2001), 1--4.
[23]
Piper, B., Ratti, C., and Ishii, H. Illuminating clay. Proc. CHI 2002, ACM Press (2002), 355.
[24]
Rosenberg, I. and Perlin, K. The UnMousePad. Proc. SIGGRAPH 2009, ACM Press (2009), 1.
[25]
Sato, T., Mamiya, H., Tokui, T., Koike, H., and Fukuchi, K. PhotoelasticTouch: transparent rubbery interface using a LCD and photoelasticity. ACM SIGGRAPH 2009 Emerging Technologies, ACM (2009), 1--1.
[26]
Sheng, J., Balakrishnan, R., and Singh, K. An interface for virtual 3D sculpting via physical proxy. Computer graphics and interactive techniques in Australasia and South East Asia, (2006), 213.
[27]
Sile O'Modhrain. Playing by Feel: Incorporating Haptic Feedback into Computer-Based musical Instruments. 2000. https://ccrma.stanford.edu/~sile/thesis.html.
[28]
Sinclair, M. The haptic lens. Ext. Abstracts ACM SIGGRAPH '97, ACM Press (1997), 179.
[29]
Smith, J.D., Graham, T.C.N., Holman, D., and Borchers, J. Low-Cost Malleable Surfaces with Multi-Touch Pressure Sensitivity. TABLETOP 2007, IEEE (2007), 205--208.
[30]
Tom White. Introducing Liquid Haptics in High Bandwidth Human Computer Interfaces. 1998. http://dspace.mit.edu/handle/1721.1/62938.
[31]
Valino Koh, J.T.K., Karunanayaka, K., Sepulveda, J., Tharakan, M.J., Krishnan, M., and Cheok, A.D. Liquid interface. Proc. ACE 2010, ACM Press (2010), 45.
[32]
Vandoren, P., Van Laerhoven, T., Claesen, L., Taelman, J., Raymaekers, C., and Van Reeth, F. IntuPaint: Bridging the gap between physical and digital painting. TABLETOP 2008, IEEE (2008), 65--72.
[33]
Viciana-Abad, R., Lecuona, A.R., and Poyade, M. The Influence of Passive Haptic Feedback and Difference Interaction Metaphors on Presence and Task Performance. Presence: Teleoperators and Virtual Environments 19, 3 (2010), 197--212.
[34]
Vlack, K., Mizota, T., Kawakami, N., Kamiyama, K., Kajimoto, H., and Tachi, S. Gelforce: a vision-based traction field computer interface. Ext. Abstracts CHI 2005, ACM Press (2005), 1154--1155.
[35]
Vogt, F., Chen, T., Hoskinson, R., and Fels, S. A malleable surface touch interface. ACM SIGGRAPH 2004 Sketches, ACM Press (2004), 36.
[36]
Weiss, M., Wagner, J., Jansen, Y., et al. SLAP widgets. Proc. CHI 2009, ACM Press (2009), 481.
[37]
Wilson, A.D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and Kirk, D. Bringing physics to the surface. Proc. UIST 2008, ACM Press (2008), 67.
[38]
Wilson, A.D. TouchLight. Proc. ICMI 2004, ACM Press (2004), 69.
[39]
Zhang, S. and Yau, S.-T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Applied Optics 46, 1 (2007), 36.
[40]
Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering 48, 2 (2010), 149--158.

Cited By

View all
  • (2024)Don't Mesh Around: Streamlining Manual-Digital Fabrication Workflows with Domain-Specific 3D ScanningProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676385(1-16)Online publication date: 13-Oct-2024
  • (2024)LensLeech: On-Lens Interaction for Arbitrary Camera DevicesProceedings of the Eighteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3623509.3633382(1-10)Online publication date: 11-Feb-2024
  • (2022)Reshaping Thinking for Shape-Shifting Technology: Adapting a MAS Agent Design to Encourage User EngagementComputer-Human Interaction Research and Applications10.1007/978-3-031-22015-9_3(32-53)Online publication date: 13-Dec-2022
  • Show More Cited By

Index Terms

  1. deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UIST '11: Proceedings of the 24th annual ACM symposium on User interface software and technology
    October 2011
    654 pages
    ISBN:9781450307161
    DOI:10.1145/2047196
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 October 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 2.5D input device
    2. deformable interfaces
    3. malleable surface
    4. sculpting interfaces

    Qualifiers

    • Research-article

    Conference

    UIST '11

    Acceptance Rates

    UIST '11 Paper Acceptance Rate 67 of 262 submissions, 26%;
    Overall Acceptance Rate 561 of 2,567 submissions, 22%

    Upcoming Conference

    UIST '25
    The 38th Annual ACM Symposium on User Interface Software and Technology
    September 28 - October 1, 2025
    Busan , Republic of Korea

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)71
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 13 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Don't Mesh Around: Streamlining Manual-Digital Fabrication Workflows with Domain-Specific 3D ScanningProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676385(1-16)Online publication date: 13-Oct-2024
    • (2024)LensLeech: On-Lens Interaction for Arbitrary Camera DevicesProceedings of the Eighteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3623509.3633382(1-10)Online publication date: 11-Feb-2024
    • (2022)Reshaping Thinking for Shape-Shifting Technology: Adapting a MAS Agent Design to Encourage User EngagementComputer-Human Interaction Research and Applications10.1007/978-3-031-22015-9_3(32-53)Online publication date: 13-Dec-2022
    • (2022)Weaving Fire into FormundefinedOnline publication date: 20-Jul-2022
    • (2021)Through the Looking Glass: Designing Agents for MAS Based Shape-Shifting Technology Using the STEAM ApproachComputer-Human Interaction Research and Applications10.1007/978-3-030-67108-2_5(80-101)Online publication date: 22-Jan-2021
    • (2020)Squishy Volumes: Evaluation of Silicone as Camera-less Pressure-Based Input for 3-Dimensional Interaction2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)10.1109/VRW50115.2020.00013(29-34)Online publication date: Mar-2020
    • (2019)Non-Rigid HCIProceedings of the 2019 on Designing Interactive Systems Conference10.1145/3322276.3322347(885-906)Online publication date: 18-Jun-2019
    • (2019)Skweezee for ProcessingProceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3294109.3300984(375-381)Online publication date: 17-Mar-2019
    • (2019)Feeling FireworksProceedings of the 2019 CHI Conference on Human Factors in Computing Systems10.1145/3290605.3300659(1-11)Online publication date: 2-May-2019
    • (2018)Enhancing User Experiences of Mobile-Based Augmented Reality via Spatial Augmented RealityAdvances in Multimedia10.1155/2018/81947262018Online publication date: 1-Jan-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media