[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

ASAP3: a batch means procedure for steady-state simulation analysis

Published: 01 January 2005 Publication History

Abstract

We introduce ASAP3, a refinement of the batch means algorithms ASAP and ASAP2, that delivers point and confidence-interval estimators for the expected response of a steady-state simulation. ASAP3 is a sequential procedure designed to produce a confidence-interval estimator that satisfies user-specified requirements on absolute or relative precision as well as coverage probability. ASAP3 operates as follows: the batch size is progressively increased until the batch means pass the Shapiro-Wilk test for multivariate normality; and then ASAP3 fits a first-order autoregressive (AR(1)) time series model to the batch means. If necessary, the batch size is further increased until the autoregressive parameter in the AR(1) model does not significantly exceed 0.8. Next, ASAP3 computes the terms of an inverse Cornish-Fisher expansion for the classical batch means t-ratio based on the AR(1) parameter estimates; and finally ASAP3 delivers a correlation-adjusted confidence interval based on this expansion. Regarding not only conformance to the precision and coverage-probability requirements but also the mean and variance of the half-length of the delivered confidence interval, ASAP3 compared favorably to other batch means procedures (namely, ABATCH, ASAP, ASAP2, and LBATCH) in an extensive experimental performance evaluation.

References

[1]
Alexopoulos, C. and Goldsman, D. 2004. To batch or not to batch? ACM Trans. Model. Comput. Simul. 14, 1 (Jan.), 76--114.
[2]
Alexopoulos, C. and Seila, A. F. 1998. Output data analysis. In Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice}, J. Banks, Ed. John Wiley & Sons, New York, NY, 225--272.
[3]
Amemiya, T. and Wu, R. Y. 1972. The effect of aggregation on prediction in the autoregressive model. J. Amer. Statist. Assoc. 67, 339 (Sept.), 628--632.
[4]
Bickel, P. J. and Doksum, K. A. 1977. Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, San Francisco, CA.
[5]
Box, G. E. P. 1954. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat. 25, 290--302.
[6]
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 1994. Time Series Analysis: Forecasting and Control. 3rd Ed. Prentice Hall, Englewood Cliffs, NJ.
[7]
Chow, Y. S. and Robbins, H. 1965. On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36, 457--462.
[8]
Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag, New York, NY.
[9]
Fishman, G. S. 1998. LABATCH.2 for analyzing sample path data {online}. Department of Operations Research, University of North Carolina, Chapel Hill, NC. Available at <http://www.unc.edu/depts/or/downloads/tech_reports/fishman/uncor97-04.ps>.
[10]
Fishman, G. S. and Yarberry, L. S. 1997. An implementation of the batch means method. INFORMS J. Comput. 9, 3, 296--310.
[11]
Forsythe, G. E., Malcolm, M. A., and Moler, C. B. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ.
[12]
Fox, B. L., Goldsman, D., and Swain, J. J. 1991. Spaced batch means. Oper. Res. Lett. 10, 5 (July), 255--263.
[13]
Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd Ed. John Wiley & Sons, New York, NY.
[14]
Jenkins, G. M. 1954. An angular transformation of the serial correlation coefficient. Biometrika 41, 1/2, 261--265.
[15]
Johnson, N. L., Kotz, S., and Balakrishnan, N. 1994. Continuous Univariate Distributions, Vol. 1. 2nd Ed. John Wiley & Sons, New York, NY.
[16]
Kang, K. and Schmeiser, B. W. 1987. Properties of batch means from stationary ARMA time series. Oper. Res. Lett. 6, 1 (March), 19--24.
[17]
Lada, E. K., Wilson, J. R., and Steiger, N. M. 2003. A wavelet-based spectral method for steady-state simulation analysis. In Proceedings of the 2003 Winter Simulation Conference, S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 422--430. Available at <http://www.informs-cs.org/wsc03papers/052.pdf>.
[18]
Lada, E. K., Wilson, J. R., Steiger, N. M., and Joines, J. A. 2004a. Performance evaluation of a wavelet-based spectral method for steady-state simulation analysis. In Proceedings of the 2004 Winter Simulation Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 694--702. Available at <www.informs-sim.org/wsc04papers/084.pdf>.
[19]
Lada, E. K., Wilson, J. R., Steiger, N. M., and Joines, J. A. 2004b. Performance of a wavelet-based spectral procedure for steady-state simulation analysis. INFORMS J. Comput. to appear. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/lada04joc.pdf>.
[20]
Malkovich, J. F. and Afifi, A. A. 1973. On tests for multivariate normality. J. Amer. Statist. Assoc. 68, 341 (March), 176--179.
[21]
Nádas, A. 1969. An extension of a theorem of Chow and Robbins on sequential confidence intervals for the mean. The Ann. Math. Stat. 40, 2, 667--671.
[22]
Royston, J. P. 1982a. An extension of Shapiro and Wilk's W test for normality to large samples. Appl. Stat. 31, 2, 115--124.
[23]
Royston, J. P. 1982b. Algorithm AS 181. The W test for normality. Appl. Stat. 31, 176--180.
[24]
Satterthwaite, F. E. 1941. Synthesis of variance. Psychometrika 6, 5, 309--316.
[25]
Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. Biometrics Bull. 2, 6, 110--114.
[26]
Searle, S. R. 1982. Matrix Algebra Useful for Statistics. John Wiley & Sons, New York, NY.
[27]
Steiger, N. M. 1999. Improved batching for confidence interval construction in steady state simulation. PhD thesis, Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <http://www.lib.ncsu.edu/etd/public/etd-19231992992670/etd.pdf>.
[28]
Steiger, N. M. and Wilson, J. R. 1999. Improved batching for confidence interval construction in steady-state simulation. In Proceedings of the 1999 Winter Simulation Conference, P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 442--451. Available at <http://www.informs-cs.org/wsc99papers/061.PDF>.
[29]
Steiger, N. M. and Wilson, J. R. 2000. Experimental performance evaluation of batch-means procedures for simulation output analysis. In Proceedings of the 2000 Winter Simulation Conference, R. R. Barton, J. A. Joines, K. Kang, and P. A. Fishwick, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 627--636. Available at <http://www.informs-cs.org/wsc00papers/084.PDF>.
[30]
Steiger, N. M. and Wilson, J. R. 2001. Convergence properties of the batch means method for simulation output analysis. INFORMS J. Comput. 13, 4, 277--293.
[31]
Steiger, N. M. and Wilson, J. R. 2002a. An improved batch means procedure for simulation output analysis. Manage. Sci. 48 12, 1569--1586.
[32]
Steiger, N. M. and Wilson, J. R. 2002b. ASAP software and user's manual. Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/installasap.exe>.
[33]
Steiger, N. M., Lada, E. K., Wilson, J. R., Alexopoulos, C., Goldsman, D., and Zouaoui, F. 2002. ASAP2: An improved batch means procedure for simulation output analysis. In Proceedings of the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 336--344. Available at <http://www.informs-cs.org/wsc02papers/043.pdf>.
[34]
Steiger, N. M., Lada, E. K., Wilson, J. R., Joines, J. A., Alexopoulos, C., and Goldsman, D. 2003. ASAP3 software and user's manual. Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe>.
[35]
Steiger, N. M., Lada, E. K., Wilson, J. R., Joines, J. A., Alexopoulos, C., and Goldsman, D. 2004. Steady-state simulation analysis using ASAP3. In Proceedings of the 2004 Winter Simulation Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ. 672--680. Available at <www.informs-sim.org/wsc04papers/081.pdf>.
[36]
Stuart, A. and Ord, J. K. 1994. Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory. 6th. Ed. Edward Arnold, London.
[37]
Suárez-González, A., López-Ardao, J. C., López-García, C., Rodríguez-Pérez, M., Fernández-Veiga, M., and Sousa-Vieira, M. E. 2002. A batch means procedure for mean value estimation of processes exhibiting long range dependence. In Proceedings of the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 456--464. Available at <http://www.informs-cs.org/wsc02papers/057.pdf>.
[38]
Tew, J. D. and Wilson, J. R. 1992. Validation of simulation analysis methods for the Schruben-Margolin correlation-induction strategy. Oper. Res. 40, 1, 87--103.
[39]
Welch, B. L. 1956. On linear combinations of several variances. J. Amer. Stat. Assoc. 51 273, 132--148.
[40]
Welch, P. D. 1983. The statistical analysis of simulation results. In Computer Performance Modeling Handbook, S. S. Lavenberg, Ed. Academic Press, New York NY, 268--329.

Cited By

View all
  • (2024)Higher-order coverage errors of batching methods via Edgeworth expansions on t-statisticsThe Annals of Statistics10.1214/24-AOS237752:4Online publication date: 1-Aug-2024
  • (2024)Statistical Model Checking of Python Agent-Based Models: An Integration of MultiVeStA and MesaBridging the Gap Between AI and Reality10.1007/978-3-031-75434-0_26(398-419)Online publication date: 30-Oct-2024
  • (2023)Statistical Uncertainty Quantification for Expensive Black-Box Models: Methodologies and Input Uncertainty ApplicationsProceedings of the Winter Simulation Conference10.5555/3643142.3643266(1501-1515)Online publication date: 10-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation  Volume 15, Issue 1
January 2005
107 pages
ISSN:1049-3301
EISSN:1558-1195
DOI:10.1145/1044322
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2005
Published in TOMACS Volume 15, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Batch means
  2. confidence interval estimation
  3. inverse Cornish-Fisher expansion
  4. sequential analysis
  5. simulation start-up problem
  6. steady-state simulation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)3
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Higher-order coverage errors of batching methods via Edgeworth expansions on t-statisticsThe Annals of Statistics10.1214/24-AOS237752:4Online publication date: 1-Aug-2024
  • (2024)Statistical Model Checking of Python Agent-Based Models: An Integration of MultiVeStA and MesaBridging the Gap Between AI and Reality10.1007/978-3-031-75434-0_26(398-419)Online publication date: 30-Oct-2024
  • (2023)Statistical Uncertainty Quantification for Expensive Black-Box Models: Methodologies and Input Uncertainty ApplicationsProceedings of the Winter Simulation Conference10.5555/3643142.3643266(1501-1515)Online publication date: 10-Dec-2023
  • (2023)Statistical Uncertainty Quantification for Expensive Black-Box Models: Methodologies and Input Uncertainty Applications2023 Winter Simulation Conference (WSC)10.1109/WSC60868.2023.10407847(1501-1515)Online publication date: 10-Dec-2023
  • (2022)Automated and distributed statistical analysis of economic agent-based modelsJournal of Economic Dynamics and Control10.1016/j.jedc.2022.104458143(104458)Online publication date: Oct-2022
  • (2022)Fourier trajectory analysis for system discriminationEuropean Journal of Operational Research10.1016/j.ejor.2021.05.052296:1(203-217)Online publication date: Jan-2022
  • (2020)Storage Allocation For Stocked and Buffer BasketsIOP Conference Series: Materials Science and Engineering10.1088/1757-899X/893/1/012009893(012009)Online publication date: 29-Jul-2020
  • (2019)The asymptotic validity of sequential stopping rules for confidence interval construction using standardized time seriesProceedings of the Winter Simulation Conference10.5555/3400397.3400424(332-343)Online publication date: 8-Dec-2019
  • (2019)Local Lagged Adapted Generalized Method of Moments: An Innovative Estimation and Forecasting Approach and its ApplicationsJournal of Time Series Econometrics10.1515/jtse-2016-002411:1Online publication date: 25-Feb-2019
  • (2019)SequestOperations Research10.1287/opre.2018.182967:4(1162-1183)Online publication date: 28-Jun-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media