[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

SamACO: variable sampling ant colony optimization algorithm for continuous optimization

Published: 01 December 2010 Publication History

Abstract

An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising.

References

[1]
M. Dorigo, G. D. Caro, and L. M. Gambardella, "Ant algorithms for discrete optimization," Artif. Life, vol. 5, no. 2, pp. 137-172, Apr. 1999.
[2]
M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA: MIT Press, 2004.
[3]
M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: Optimization by a colony of cooperating agents," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26, no. 1, pp. 29-41, Feb. 1996.
[4]
M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning approach to the traveling salesman problem," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53-66, Apr. 1997.
[5]
G. Leguizamón and Z. Michalewicz, "A new version of ant system for subset problems," in Proc. IEEE CEC, Piscataway, NJ, 1999, pp. 1459-1464.
[6]
K. M. Sim and W. H. Sun, "Ant colony optimization for routing and loadbalancing: Survey and new directions," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 33, no. 5, pp. 560-572, Sep. 2003.
[7]
S. S. Iyengar, H.-C. Wu, N. Balakrishnan, and S. Y. Chang, "Biologically inspired cooperative routing for wireless mobile sensor networks," IEEE Syst. J., vol. 1, no. 1, pp. 29-37, Sep. 2007.
[8]
W.-N. Chen and J. Zhang, "An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 1, pp. 29-43, Jan. 2009.
[9]
D. Merkle, M. Middendorf, and H. Schmeck, "Ant colony optimization for resource-constrained project scheduling," IEEE Trans. Evol. Comput., vol. 6, no. 4, pp. 333-346, Aug. 2002.
[10]
G. Wang, W. Gong, B. DeRenzi, and R. Kastner, "Ant colony optimizations for resource- and timing-constrained operation scheduling," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 6, pp. 1010-1029, Jun. 2007.
[11]
J. Zhang, H. S.-H. Chung, A. W.-L. Lo, and T. Huang, "Extended ant colony optimization algorithm for power electronic circuit design," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 147-162, Jan. 2009.
[12]
N. Monmarché, G. Venturini, and M. Slimane, "On how Pachycondyla apicalis ants suggest a new search algorithm," Future Gener. Comput. Syst., vol. 16, no. 9, pp. 937-946, Jun. 2000.
[13]
G. Bilchev and I. C. Parmee, "The ant colony metaphor for searching continuous design spaces," in Proc. AISB Workshop Evol. Comput., vol. 933, LNCS, 1995, pp. 25-39.
[14]
M. Wodrich and G. Bilchev, "Cooperative distributed search: The ants' way," Control Cybern., vol. 26, no. 3, pp. 413-446, 1997.
[15]
M. Mathur, S. B. Karale, S. Priye, V. K. Jayaraman, and B. D. Kulkarni, "Ant colony approach to continuous function optimization," Ind. Eng. Chem. Res., vol. 39, no. 10, pp. 3814-3822, 2000.
[16]
J. Dréo and P. Siarry, "Continuous interacting ant colony algorithm based on dense heterarchy," Future Gener. Comput. Syst., vol. 20, no. 5, pp. 841-856, Jun. 2004.
[17]
X.-M. Hu, J. Zhang, and Y. Li, "Orthogonal methods based ant colony search for solving continuous optimization problems," J. Comput. Sci. Technol., vol. 23, no. 1, pp. 2-18, Jan. 2008.
[18]
J. Dréo and P. Siarry, "An ant colony algorithm aimed at dynamic continuous optimization," Appl. Math. Comput., vol. 181, no. 1, pp. 457-467, Oct. 2006.
[19]
H. Huang and Z. Hao, "ACO for continuous optimization based on discrete encoding," in Proc. ANTS, vol. 4150, LNCS, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds., 2006, pp. 504-505.
[20]
K. Socha, "ACO for continuous and mixed-variable optimization," in Proc. ANTS, vol. 3172, LNCS, M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondata, and T. Stützle, Eds., 2004, pp. 25-36.
[21]
K. Socha and M. Dorigo, "Ant colony optimization for continuous domains," Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155-1173, Mar. 2008.
[22]
P. Korošec and J. Šilc, "High-dimensional real-parameter optimization using the differential ant-stigmergy algorithm," Int. J. Intell. Comput. Cybern., vol. 2, no. 1, pp. 34-51, 2009.
[23]
M. Kong and P. Tian, "A direct application of ant colony optimization to function optimization problem in continuous domain," in ANTS 2006, vol. 4150, LNCS, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds., 2006, pp. 324-331.
[24]
P. Korošec, J. Šilc, K. Oblak, and F. Kosel, "The differential ant-stigmergy algorithm: An experimental evaluation and a real-world application," in Proc. IEEE CEC, Singapore, 2007, pp. 157-164.
[25]
P. Korošec and J. Šilc, "The differential ant-stigmergy algorithm for large scale real-parameter optimization," in ANTS 2008, vol. 5217, LNCS, M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, and A. F. T. Winfield, Eds., 2008, pp. 413-414.
[26]
S. Tsutsui, "An enhanced aggregation pheromone system for realparameter optimization in the ACO metaphor," in Proc. ANTS, vol. 4150, LNCS, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds., 2006, pp. 60-71.
[27]
F. O. de França, G. P. Coelho, F. J. V. Zuben, and R. R. de F. Attux, "Multivariate ant colony optimization in continuous search spaces," in Proc. GECCO, Atlanta, GA, 2008, pp. 9-16.
[28]
S. H. Pourtakdoust and H. Nobahari, "An extension of ant colony system to continuous optimization problems," in Proc. ANTS, vol. 3172, LNCS, M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondata, and T. Stützle, Eds., 2004, pp. 294-301.
[29]
J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, Jun. 2006.
[30]
X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82-102, Jul. 1999.
[31]
A. Auger and N. Hansen, "Performance evaluation of an advanced local search evolutionary algorithm," in Proc. IEEE CEC, 2005, vol. 2, pp. 1777-1784.
[32]
B. Bullnheimer, R. F. Hartl, and C. Strauss, "A new rank based version of the ant system--A computational study," Central Eur. J. Oper. Res. Econ., vol. 7, no. 1, pp. 25-38, 1997.
[33]
T. Stützle and H. H. Hoos, "MAX-MIN ant system," Future Gener. Comput. Syst., vol. 16, no. 8, pp. 889-914, Jun. 2000.
[34]
A. C. Zecchin, A. R. Simpson, H. R. Maier, and J. B. Nixon, "Parametric study for an ant algorithm applied to water distribution system optimization," IEEE Trans. Evol. Comput., vol. 9, no. 2, pp. 175-191, Apr. 2005.
[35]
M. Guntsch and M. Middendorf, "Pheromone modification strategies for ant algorithms applied to dynamic TSP," in Proc. EvoWorkshop, vol. 2037, LNCS, E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, Eds., 2001, pp. 213-222.
[36]
P. Pellegrini, D. Favaretto, and E. Moretti, "On MAX-MIN ant system's parameters," in Proc. ANTS, vol. 4150, LNCS, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds., 2006, pp. 203-214.
[37]
M. L. Pilat and T. White, "Using genetic algorithms to optimize ACSTSP," in Proc. ANTS, vol. 2463, LNCS, M. Dorigo, G. D. Caro, and M. Sampels, Eds., 2002, pp. 282-283.
[38]
J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo, CA: Morgan Kaufmann, 2001.
[39]
M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space," IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58-73, Feb. 2002.
[40]
P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, "Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization," Nanyang Technol. Univ., Singapore, KanGAL Rep. 2005005, May 2005.

Cited By

View all
  1. SamACO: variable sampling ant colony optimization algorithm for continuous optimization

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
      IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics  Volume 40, Issue 6
      December 2010
      224 pages

      Publisher

      IEEE Press

      Publication History

      Published: 01 December 2010
      Accepted: 03 February 2010
      Revised: 05 July 2009
      Received: 20 February 2009

      Author Tags

      1. Ant algorithm
      2. ant algorithm
      3. ant colony optimization (ACO)
      4. ant colony system (ACS)
      5. continuous optimization
      6. function optimization
      7. local search
      8. numerical optimization

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Banyan tree growth optimization and applicationCluster Computing10.1007/s10586-022-03953-027:1(411-441)Online publication date: 1-Feb-2024
      • (2022)An accurate cell tracking approach with self-regulated foraging behavior of ant colonies in dynamic microscopy imagesApplied Intelligence10.1007/s10489-021-02424-052:2(1448-1460)Online publication date: 1-Jan-2022
      • (2019)Solving Nonlinear Equation Systems Using Multiobjective Differential EvolutionEvolutionary Multi-Criterion Optimization10.1007/978-3-030-12598-1_12(139-150)Online publication date: 10-Mar-2019
      • (2017)Adaptive Multimodal Continuous Ant Colony OptimizationIEEE Transactions on Evolutionary Computation10.1109/TEVC.2016.259106421:2(191-205)Online publication date: 1-Apr-2017
      • (2017)Modeling, analysis and simulation on searching for global optimum region of particle swarm optimization2017 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC.2017.7969393(813-821)Online publication date: 5-Jun-2017
      • (2017)Ant colony optimization with different crossover schemes for global optimizationCluster Computing10.1007/s10586-017-0793-820:2(1247-1257)Online publication date: 1-Jun-2017
      • (2016)A novel algorithm for reducing energy-consumption in cloud computing environmentJournal of King Saud University - Computer and Information Sciences10.1016/j.jksuci.2014.04.00728:1(55-67)Online publication date: 1-Jan-2016
      • (2016)Imperceptibility-Robustness tradeoff studies for ECG steganography using Continuous Ant Colony OptimizationExpert Systems with Applications: An International Journal10.1016/j.eswa.2015.12.01049:C(123-135)Online publication date: 1-May-2016
      • (2015)A novel bionic algorithm inspired by plant root foraging behaviorsApplied Soft Computing10.1016/j.asoc.2015.08.01437:C(95-113)Online publication date: 1-Dec-2015
      • (2014)A new real-coded Bayesian optimization algorithm based on a team of learning automata for continuous optimizationGenetic Programming and Evolvable Machines10.1007/s10710-013-9206-915:2(169-193)Online publication date: 1-Jun-2014
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media